Difference between revisions of "Manuals/calci/LUCAS"

From ZCubes Wiki
Jump to navigation Jump to search
 
(17 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''LUCAS(n)'''</div><br/>
+
<div style="font-size:30px">'''LUCAS (NumberUpto)'''</div><br/>
*<math>n </math> is the number indicating the position.
+
*<math>NumberUpto</math> is the number indicating the position.
 
+
**LUCAS(),returns the sum of its two immediate previous terms.
  
 
==Description==
 
==Description==
 
*This function gives the Lucas series of the numbers.  
 
*This function gives the Lucas series of the numbers.  
*Lucas numbers are similar to the Fibonacci numberss.  
+
*Lucas numbers are similar to the Fibonacci numbers.  
 
*It is generated by added the last two numbers in the series.  
 
*It is generated by added the last two numbers in the series.  
*In <math>LUCAS(n), n </math> is the numbers position, which is used to displaying the numbers in the given range.  
+
*In <math>LUCAS(NumberUpto)</math>, <math>NumberUpto</math> is the numbers position, which is used to displaying the numbers in the given range.  
*The difference between Lucas and Fibonacci numbers are with the first two terms L0=2 and L1=1, but F0=0 and F1=1.  
+
*The difference between Lucas and Fibonacci numbers are with the first two terms <math>L_0=2</math> and <math>L_1=1 </math>, but <math>F_0=0</math> and <math>F_1=1</math>.  
*The Lucas numbers  are defined by: <math>Ln=\begin{cases} 2         if  n=0
+
*The Lucas numbers  are defined by:  
                                                          1         if  n=1
+
<math>L_n=\begin{Bmatrix} 2 & if & n=0 \\
                                                          Ln-1+Ln-2 if n>1
+
          1           &if & n=1 \\
                                              \end{cases}
+
          L_{n-1}+L_{n-2}  &if & n>1
 +
          \end{Bmatrix}</math>
 +
*The sequence of Lucas numbers is  2,1,3,4,7,11,18,29....
 +
*The relation between Lucas and Fibonacci numbers are:
 +
<math> L_n=F_n+2F_{n-1} </math>
 +
and :
 +
<math> F_n=\frac{L_{n-1}+L_{n+1}}{5}</math> 
 +
where <math>L</math> is the Lucas series with <math> L_n</math> is the <math>n^{th}</math> Lucas number and <math> F_n </math> is the <math>n^{th}</math> Fibonacci number.
 +
    This function will, give the result as error when  <math>NumberUpto</math> is non-numeric or NumberUpto < 0
 +
 
 +
==Examples==
 +
#=LUCAS(5) = 2  1  3    4  7    11
 +
#=LUCAS(0) = 2
 +
#=LUCAS(1) = 2  1
 +
#=LUCAS(3) = 2  1    3    4 
 +
#=LUCAS(-1) = Null
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|14-NdQwKz9w|280|center|LUCAS}}
  
*The sequence of Lucas numbers is  2,1,3,4,7, 11,18,29,......
+
==See Also==
*The relation between Lucas and Fibonacci numbers are: Ln=Fn+2Fn-1 and Fn=Ln-1+Ln+1\5 
+
*[[Manuals/calci/FIBONNACI| FIBONNACI]]
where L is the Lucas series with <math> L(n)</math> is the nth Lucas number and <math> Fn </math> is the nth Fibonacci number.
+
*[[Manuals/calci/PASCAL| PASCAL]]
    This function will give the result as error when  n is nonnumeric or n < 0
+
*[[Manuals/calci/FOURIERANALYSIS| FOURIERANALYSIS]]
  
 +
==References==
 +
[http://en.wikipedia.org/wiki/Lucas_number LUCAS]
  
==Examples==
 
#=LUCAS(5)= 2  1  3    4  7    11
 
#=LUCAS(0)= 2
 
#=LUCAS(1)= 2  1
 
#=LUCAS(3)= 2  1    3    4 
 
#=LUCAS(-1)=Null
 
  
  
==See Also==
 
  
 +
*[[Z_API_Functions | List of Main Z Functions]]
  
==References==
+
*[[ Z3 |  Z3 home ]]

Latest revision as of 16:26, 25 June 2018

LUCAS (NumberUpto)


  • is the number indicating the position.
    • LUCAS(),returns the sum of its two immediate previous terms.

Description

  • This function gives the Lucas series of the numbers.
  • Lucas numbers are similar to the Fibonacci numbers.
  • It is generated by added the last two numbers in the series.
  • In , is the numbers position, which is used to displaying the numbers in the given range.
  • The difference between Lucas and Fibonacci numbers are with the first two terms and , but and .
  • The Lucas numbers are defined by:

  • The sequence of Lucas numbers is 2,1,3,4,7,11,18,29....
  • The relation between Lucas and Fibonacci numbers are:

and : where is the Lucas series with is the Lucas number and is the Fibonacci number.

   This function will, give the result as error when   is non-numeric or NumberUpto < 0

Examples

  1. =LUCAS(5) = 2 1 3 4 7 11
  2. =LUCAS(0) = 2
  3. =LUCAS(1) = 2 1
  4. =LUCAS(3) = 2 1 3 4
  5. =LUCAS(-1) = Null

Related Videos

LUCAS

See Also

References

LUCAS