Difference between revisions of "Manuals/calci/ERFC"

From ZCubes Wiki
Jump to navigation Jump to search
 
(6 intermediate revisions by 3 users not shown)
Line 2: Line 2:
 
*<math>a</math> is the lower limit.
 
*<math>a</math> is the lower limit.
 
*<math>accuracy</math> gives the accurate value of the solution.
 
*<math>accuracy</math> gives the accurate value of the solution.
 +
**ERFC(),returns the Complementary Error Function
 +
  
 
==Description==
 
==Description==
Line 15: Line 17:
 
**<math>a</math> is the lower limit.
 
**<math>a</math> is the lower limit.
 
**<math>accuracy</math> gives the accurate value of the solution.
 
**<math>accuracy</math> gives the accurate value of the solution.
*For e.g.,erfc(10),erfc(10,0.01)
+
*For e.g.,ERFC(10),ERFC(10,0.01)
  
 
==Examples==
 
==Examples==
#ERFC(3)=0.0000219610
+
#ERFC(3)=0.000022090496998639075
#ERFC(2)=0.00467776242
+
#ERFC(2)=0.004677734981047288
 
#ERFC(0)=1
 
#ERFC(0)=1
#ERFC(-2)=NAN
+
#ERFC(-2)=1.9953222650189528
 +
 
 +
==Related Videos==
 +
 
 +
{{#ev:youtube|PBSFXukqztU|280|center|Complimentary Error Function}}
  
 
==See Also==
 
==See Also==
Line 28: Line 34:
 
==References==
 
==References==
 
[http://en.wikipedia.org/wiki/Error_function Error Function ]
 
[http://en.wikipedia.org/wiki/Error_function Error Function ]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 03:14, 29 September 2021

ERFC(a,accuracy)


  • is the lower limit.
  • gives the accurate value of the solution.
    • ERFC(),returns the Complementary Error Function


Description

  • This function gives the complementary ERF function.
  • The complementary error function is the error function with the limit x and infinity. It is denoted by erfc(x).
  • It is also called scaled complementary error function.
  • ERFC is defined by:

.

  • This function will return the result as error when a is nonnumeric or negative.

ZOS

  • The syntax is to calculate complementary error function in ZOS is .
    • is the lower limit.
    • gives the accurate value of the solution.
  • For e.g.,ERFC(10),ERFC(10,0.01)

Examples

  1. ERFC(3)=0.000022090496998639075
  2. ERFC(2)=0.004677734981047288
  3. ERFC(0)=1
  4. ERFC(-2)=1.9953222650189528

Related Videos

Complimentary Error Function

See Also

References

Error Function