Difference between revisions of "Manuals/calci/LOGNORMDIST"

From ZCubes Wiki
Jump to navigation Jump to search
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''LOGNORMDIST(number,mean,standarddeviation)'''</div><br/>
+
<div style="font-size:30px">'''LOGNORMDIST(Number,Mean,StandardDeviation,Accuracy)'''</div><br/>
*<math>number</math> is the value.
+
*<math>Number</math> is the value.
*<math> mean </math> is the mean value of <math>log(x)</math>,
+
*<math>Mean </math> is the mean value of <math>log(x)</math>,
*<math> standarddeviation</math> is the standard deviation value of <math>log(x)</math>.
+
*<math>StandardDeviation</math> is the standard deviation value of <math>log(x)</math>.
 +
*<math>Accuracy</math> is correct decimal places for the result.
 +
** LOGNORMDIST(), returns the cumulative lognormal distribution.
  
 
==Description==
 
==Description==
Line 18: Line 20:
 
*This function will give the result as error when
 
*This function will give the result as error when
 
  1. Any one of the argument is non-numeric.
 
  1. Any one of the argument is non-numeric.
  2. Suppose <math> number \le 0 </math> or <math> standarddeviation \le 0</math>
+
  2. Suppose <math> Number \le 0 </math> or <math> StandardDeviation \le 0</math>
  
 
==ZOS==
 
==ZOS==
*The syntax is to calculate cumulative log normal distribution in ZOS is <math>LOGNORMDIST(number,mean,standarddeviation)</math>.
+
*The syntax is to calculate cumulative log normal distribution in ZOS is <math>LOGNORMDIST(Number,Mean,StandardDeviation,Accuracy)</math>.
**<math>number</math> is the value.
+
**<math>Number</math> is the value.
**<math> mean </math> is the mean value of <math>log(x)</math>.
+
**<math>Mean </math> is the mean value of <math>log(x)</math>.
**<math> standarddeviation</math> is the standard deviation value of <math>log(x)</math>.
+
**<math> StandardDeviation</math> is the standard deviation value of <math>log(x)</math>.
 
*For e.g.,LOGNORMDIST(10,8.002,4.501)
 
*For e.g.,LOGNORMDIST(10,8.002,4.501)
 
{{#ev:youtube|rFnzI4pLSuo|280|center|Log Normal Distribution}}
 
{{#ev:youtube|rFnzI4pLSuo|280|center|Log Normal Distribution}}
Line 32: Line 34:
 
#=LOGNORMDIST(10,24.05,12.95) = 0.046543186
 
#=LOGNORMDIST(10,24.05,12.95) = 0.046543186
 
#=LOGNORMDIST(50,87.0036,42.9784) = 0.026597569
 
#=LOGNORMDIST(50,87.0036,42.9784) = 0.026597569
#=LOGNORMDIST(-10,5,2) = NAN
+
#=LOGNORMDIST(-10,5,2) = #N/A (NUMBER GREATER THAN (OR) NOT EQUAL TO 0)
  
 
==Related Videos==
 
==Related Videos==
Line 45: Line 47:
 
==References==
 
==References==
 
[http://en.wikipedia.org/wiki/Log-normal_distribution Log-normal distribution]
 
[http://en.wikipedia.org/wiki/Log-normal_distribution Log-normal distribution]
 +
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 09:22, 2 June 2020

LOGNORMDIST(Number,Mean,StandardDeviation,Accuracy)


  • is the value.
  • is the mean value of ,
  • is the standard deviation value of .
  • is correct decimal places for the result.
    • LOGNORMDIST(), returns the cumulative lognormal distribution.

Description

  • This function gives the value of the cumulative log normal distribution.
  • This distribution is the continuous probability distribution.
  • Lognomal distribution is also called Galton's distribution.
  • A random variable which is log-normally distributed takes only positive real values.
  • Suppose is Normally Distributed function, then also Normally Distributed
  • also Normally Distributed.
  • Let the Normal Distribution function and its Mean= , Standard Deviation =
  • Then the lognormal cumulative distribution is calculated by:

where is the error function,. The error function (also called the Gauss error function) is a special function of sigmoid shape which occurs in probability, statistics and partial differential equations.

  • And is the Cumulative Distribution function of the Standard Normal distribution.
  • This function will give the result as error when
1. Any one of the argument is non-numeric.
2. Suppose  or 

ZOS

  • The syntax is to calculate cumulative log normal distribution in ZOS is .
    • is the value.
    • is the mean value of .
    • is the standard deviation value of .
  • For e.g.,LOGNORMDIST(10,8.002,4.501)
Log Normal Distribution

Examples

  1. =LOGNORMDIST(2,5.4,2.76) = 0.044061652
  2. =LOGNORMDIST(10,24.05,12.95) = 0.046543186
  3. =LOGNORMDIST(50,87.0036,42.9784) = 0.026597569
  4. =LOGNORMDIST(-10,5,2) = #N/A (NUMBER GREATER THAN (OR) NOT EQUAL TO 0)

Related Videos

Lognormal Distribution

See Also

References

Log-normal distribution