Difference between revisions of "Manuals/calci/PERMUTATIONS"

From ZCubes Wiki
Jump to navigation Jump to search
 
(9 intermediate revisions by 2 users not shown)
Line 9: Line 9:
 
*Maxcount is the maximum number of counts to find the Permutation.
 
*Maxcount is the maximum number of counts to find the Permutation.
 
*A formula for the number of possible permutations of k objects from a set of n. <math>n_pK or P(n,k)=\frac{n!}{(n-k)!} </math>
 
*A formula for the number of possible permutations of k objects from a set of n. <math>n_pK or P(n,k)=\frac{n!}{(n-k)!} </math>
 +
 +
==Examples==
 +
1. PERMUTATIONS([3,4,5,6],3)
 +
3  4  5
 +
3  4  6
 +
3  5  4
 +
3  5  6
 +
3  6  4
 +
3  6  5
 +
4  3  5
 +
4  3  6
 +
4  5  3
 +
4  5  6
 +
4  6  3
 +
4  6  5
 +
5  3  4
 +
5  3  6
 +
5  4  3
 +
5  4  6
 +
5  6  3
 +
5  6  4
 +
6  3  4
 +
6  3  5
 +
6  4  3
 +
6  4  5
 +
6  5  3
 +
  6  5  4
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|v=DROZVHObeko|280|center|Permutations}}
 +
 +
 +
==See Also==
 +
*[[Manuals/calci/PERMUT | PERMUT]]
 +
*[[Manuals/calci/COMBIN  | COMBIN ]]
 +
 +
==References==
 +
*[https://en.wikipedia.org/wiki/Permutation Permutation]
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 23:59, 15 April 2020

PERMUTATIONS (List,Of,MaxCount,IsAsString)


  • are set of real numbers.
  • maximum number of counts.

Description

  • This function returns the Permutation list of the given number.
  • A permutation, also called an "arrangement number" or "order," is a rearrangement of the elements of an ordered in a list.
  • In PERMUTATIONS(List,Of,MaxCount,IsAsString),List is the set of numbers to find the Permutation.
  • Maxcount is the maximum number of counts to find the Permutation.
  • A formula for the number of possible permutations of k objects from a set of n.

Examples

1. PERMUTATIONS([3,4,5,6],3)

3  4  5
3  4  6
3  5  4
3  5  6
3  6  4
3  6  5
4  3  5
4  3  6
4  5  3
4  5  6
4  6  3
4  6  5
5  3  4
5  3  6
5  4  3
5  4  6
5  6  3
5  6  4
6  3  4
6  3  5
6  4  3
6  4  5
6  5  3
 6  5  4

Related Videos

Permutations


See Also

References