Difference between revisions of "Manuals/calci/TANH"

From ZCubes Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''TANH(z)'''</div><br/>
+
<div style="font-size:30px">'''TANH(x)'''</div><br/>
* where z is any real number
+
* where x is any real number.
 +
**TANH(), returns the hyperbolic tangent of a number.
 +
 
 
==Description==
 
==Description==
  
*This function gives the hyperbolic Tan of 'z'.
+
*This function gives the hyperbolic Tan of 'x'.
 
*It is also called as Circular function.
 
*It is also called as Circular function.
*Here <math>TANH(z)=\frac{e^z-e^{-z}}{e^z+e^{-z}}</math>  ie, <math>\frac{SINH(z)} {COSH(z)}</math> or <math>-iTAN(iz)</math>, where <math>i</math> is the imginary unit and <math>i=\sqrt{-1}</math>
+
*Here <math>TANH(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}</math>  ie, <math>\frac{SINH(x)} {COSH(x)}</math> or <math>-iTAN(ix)</math>, where <math>i</math> is the imginary unit and <math>i=\sqrt{-1}</math>
*Also relation between Hyperbolic & Trigonometric function is <math>Tan(iz)=iTanh(z)</math> & <math>Tanh(iz)= iTan(z)</math>
+
*Also relation between Hyperbolic & Trigonometric function is <math>Tan(ix)=iTanh(x)</math> & <math>Tanh(ix)= iTan(x)</math>
*TANH(-z)=-TANH(z)
+
*TANH(-x)=-TANH(x)
  
 
== Examples ==
 
== Examples ==
'''TANH(z)'''
+
'''TANH(x)'''
*'''z''' is any real number.
+
*'''x''' is any real number.
  
 
{|id="TABLE1" class="SpreadSheet blue"
 
{|id="TABLE1" class="SpreadSheet blue"
  
 
|- class="even"
 
|- class="even"
|'''TANH(z)'''
+
|'''TANH(x)'''
 
|'''Value'''
 
|'''Value'''
  
Line 48: Line 50:
 
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions]
 
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions]
 
*[http://en.wikipedia.org/wiki/Hyperbolic_function  Hyperbolic Function]
 
*[http://en.wikipedia.org/wiki/Hyperbolic_function  Hyperbolic Function]
 +
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 15:50, 21 August 2018

TANH(x)


  • where x is any real number.
    • TANH(), returns the hyperbolic tangent of a number.

Description

  • This function gives the hyperbolic Tan of 'x'.
  • It is also called as Circular function.
  • Here ie, or , where is the imginary unit and
  • Also relation between Hyperbolic & Trigonometric function is &
  • TANH(-x)=-TANH(x)

Examples

TANH(x)

  • x is any real number.
TANH(x) Value
TANH(0) 0
TANH(1) 0.7615941559557649
TANH(10) 1

Related Videos

Hyperbolic TAN

See Also

References