Difference between revisions of "Manuals/calci/TANH"
Jump to navigation
Jump to search
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
− | <div style="font-size:30px">'''TANH( | + | <div style="font-size:30px">'''TANH(x)'''</div><br/> |
− | * where | + | * where x is any real number. |
+ | **TANH(), returns the hyperbolic tangent of a number. | ||
+ | |||
==Description== | ==Description== | ||
− | *This function gives the hyperbolic Tan of ' | + | *This function gives the hyperbolic Tan of 'x'. |
*It is also called as Circular function. | *It is also called as Circular function. | ||
− | *Here <math>TANH( | + | *Here <math>TANH(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}</math> ie, <math>\frac{SINH(x)} {COSH(x)}</math> or <math>-iTAN(ix)</math>, where <math>i</math> is the imginary unit and <math>i=\sqrt{-1}</math> |
− | *Also relation between Hyperbolic & Trigonometric function is <math>Tan( | + | *Also relation between Hyperbolic & Trigonometric function is <math>Tan(ix)=iTanh(x)</math> & <math>Tanh(ix)= iTan(x)</math> |
− | *TANH(- | + | *TANH(-x)=-TANH(x) |
== Examples == | == Examples == | ||
− | '''TANH( | + | '''TANH(x)''' |
− | *''' | + | *'''x''' is any real number. |
{|id="TABLE1" class="SpreadSheet blue" | {|id="TABLE1" class="SpreadSheet blue" | ||
|- class="even" | |- class="even" | ||
− | |'''TANH( | + | |'''TANH(x)''' |
|'''Value''' | |'''Value''' | ||
Line 48: | Line 50: | ||
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions] | *[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions] | ||
*[http://en.wikipedia.org/wiki/Hyperbolic_function Hyperbolic Function] | *[http://en.wikipedia.org/wiki/Hyperbolic_function Hyperbolic Function] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 15:50, 21 August 2018
TANH(x)
- where x is any real number.
- TANH(), returns the hyperbolic tangent of a number.
Description
- This function gives the hyperbolic Tan of 'x'.
- It is also called as Circular function.
- Here ie, or , where is the imginary unit and
- Also relation between Hyperbolic & Trigonometric function is &
- TANH(-x)=-TANH(x)
Examples
TANH(x)
- x is any real number.
TANH(x) | Value |
TANH(0) | 0 |
TANH(1) | 0.7615941559557649 |
TANH(10) | 1 |
Related Videos
See Also
References