Difference between revisions of "Manuals/calci/SKEWSYMMETRIC"
Jump to navigation
Jump to search
(3 intermediate revisions by the same user not shown) | |||
Line 7: | Line 7: | ||
*A Skew Symmetric is a square matrix which satisfies the following identity <math>A=A^T</math>,where <math>A^T</math> is the matrix transpose. | *A Skew Symmetric is a square matrix which satisfies the following identity <math>A=A^T</math>,where <math>A^T</math> is the matrix transpose. | ||
*If the entry in the <math>i^{th}</math> row and <math>j^{th}</math> column is <math>a_{ij}</math>. | *If the entry in the <math>i^{th}</math> row and <math>j^{th}</math> column is <math>a_{ij}</math>. | ||
− | *i.e.<math>A = (a_{ij})</math> then the skew symmetric condition is <math>(a_{ij}) = | + | *i.e.<math>A = (a_{ij})</math> then the skew symmetric condition is <math>(a_{ij})</math> = <math>-(a_{ij})</math>. |
*So its diagonal values are "0". | *So its diagonal values are "0". | ||
Line 45: | Line 45: | ||
| (-70) || -45 || 43 || -70 || -34 || 0 || -55 || -76 || 0 | | (-70) || -45 || 43 || -70 || -34 || 0 || -55 || -76 || 0 | ||
|} | |} | ||
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|v=uKPmyG18N7I|280|center|Skew Symmetric}} | ||
+ | |||
==See Also== | ==See Also== |
Latest revision as of 12:01, 25 April 2019
SKEWSYMMETRIC(Order)
- is the order of the skew symmetric matrix.
Description
- This function shows the Skew Symmetric matrix with the given order.
- Skew Symmetric is also called Anti Symmetric or Antimetric.
- A Skew Symmetric is a square matrix which satisfies the following identity ,where is the matrix transpose.
- If the entry in the row and column is .
- i.e. then the skew symmetric condition is = .
- So its diagonal values are "0".
Examples
1. SKEWSYMMETRIC(4)
0 | -39 | 2 | 25 |
39 | 0 | 15 | 72 |
(-2) | -15 | 0 | 43 |
(-25) | -72 | -43 | 0 |
2. SKEWSYMMETRIC(9)
0 | 48 | -36 | 72 | 25 | 51 | -13 | -98 | 70 |
(-48) | 0 | -97 | -33 | 78 | -30 | -56 | 62 | 45 |
36 | 97 | 0 | 42 | -47 | 58 | 94 | 24 | -43 |
(-72) | 33 | -42 | 0 | -23 | -77 | -80 | 69 | 70 |
(-25) | -78 | 47 | 23 | 0 | -17 | 17 | -100 | 34 |
(-51) | 30 | -58 | 77 | 17 | 0 | -43 | -67 | 0 |
13 | 56 | -94 | 80 | -17 | 43 | 0 | -24 | 55 |
98 | -62 | -24 | -69 | 100 | 67 | 24 | 0 | 76 |
(-70) | -45 | 43 | -70 | -34 | 0 | -55 | -76 | 0 |
Related Videos
See Also
References