Difference between revisions of "Manuals/calci/ANTILOG"

From ZCubes Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 14: Line 14:
 
#ANTILOG(3.23621726987935,3) = 35.000000000000014 = 35(Approximate)
 
#ANTILOG(3.23621726987935,3) = 35.000000000000014 = 35(Approximate)
 
#ANTILOG(2.397940008672037,10) = 249.9999999999997 = 250 (Approximate)
 
#ANTILOG(2.397940008672037,10) = 249.9999999999997 = 250 (Approximate)
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|v=vZ709qOc8x8|280|center|Inverse Log}}
  
 
==See Also==
 
==See Also==
Line 20: Line 24:
 
*[[Manuals/calci/LN| LN]]
 
*[[Manuals/calci/LN| LN]]
  
 
+
==References==
 
+
*[http://www.rapidtables.com/calc/math/anti-log-calculator.htm AntiLog]
  
 
*[[Z_API_Functions | List of Main Z Functions]]
 
*[[Z_API_Functions | List of Main Z Functions]]
  
 
*[[ Z3 |  Z3 home ]]
 
*[[ Z3 |  Z3 home ]]

Latest revision as of 00:28, 1 July 2019

ANTILOG (Number,Base)


  • is the log value to find the Antilog value
  • base value of the Log value.

Description

  • This function shows the antilog of a given number.
  • Antilog is the number whose logarithm is a given number.
  • For example, the logarithm of 1,000 (10 3) is 3, so the antilogarithm of 3 is 1,000.
  • In algebraic notation, if log x = y, then antilog y = x.
  • Here ANTILOG(Number, Base) indicates we can find the anti logarithmic value with any base.

Examples

  1. ANTILOG(3.3219280948873626,2) = 10.000000000000002 =10(Approximate)
  2. ANTILOG(3.23621726987935,3) = 35.000000000000014 = 35(Approximate)
  3. ANTILOG(2.397940008672037,10) = 249.9999999999997 = 250 (Approximate)

Related Videos

Inverse Log

See Also

References