Difference between revisions of "Bartlett'sTest"

 
(25 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="font-size:25px">'''BARTLETTSTEST(DataRange,ConfidenceLevel,NewTableFlag)'''</div><br/>
+
<div style="font-size:25px">'''BARTLETTSTEST(DataRange, ConfidenceLevel, NewTableFlag)'''</div>
*<math>DataRange</math> is the array of x values.
+
*'''<math>DataRange</math> is the array of x values.
*<math>ConfidenceLevel</math> is the value from 0 to 1.
+
*'''<math>ConfidenceLevel</math> is the value from 0 to 1.
*<math>NewTableFlag</math> is either TRUE or FALSE. TRUE for getting results in a new cube. FALSE will display results in the same cube.
+
*'''<math>NewTableFlag</math> is either TRUE or FALSE. TRUE for getting results in a new cube. FALSE will display results in the same cube.<br></br>
  
==Description==
+
==='''DESCRIPTION===
* Bartlett's test is used to test if k samples are from populations with equal variances.
+
* '''Bartlett's test is used to test if k samples are from populations with equal variances.
* Bartlett's test is sensitive to departures from normality.  
+
* '''Bartlett's test is sensitive to departures from normality.  
* That is, if the samples come from non-normal distributions, then Bartlett's test may simply be testing for non-normality.
+
* '''That is, if the samples come from non-normal distributions, then Bartlett's test may simply be testing for non-normality.
 
   <math>B=\frac{df_WlnMS_W-\sum_{j}df_jln s_j^2}{1+\frac{1}{3(k-1)}(\sum_{j}\frac{1}{df_j}-\frac{1}{df_W})}</math>
 
   <math>B=\frac{df_WlnMS_W-\sum_{j}df_jln s_j^2}{1+\frac{1}{3(k-1)}(\sum_{j}\frac{1}{df_j}-\frac{1}{df_W})}</math>
* B is the Bartlett's test static.
+
* '''B is the Bartlett's test static.
* <math>MS_W</math> is the pooled variance across all groups.
+
* '''<math>MS_W</math> is the pooled variance across all groups.<br></br>
  
==Result==
+
==='''RESULT===
* If p-value is greater than BCritical value, reject the null hypothesis.
+
* '''If p-value is greater than BCritical value, reject the null hypothesis.
* Else retain null hypothesis.
+
* '''Else, retain null hypothesis.<br></br>
  
==Example==
+
==='''EXAMPLE===
 
{| class="wikitable"
 
{| class="wikitable"
 
|+Spreadsheet
 
|+Spreadsheet
Line 46: Line 46:
 
|54 || 74 || 58 || 93
 
|54 || 74 || 58 || 93
 
|}
 
|}
=BARTLETTSTEST([A1:A8,B1:B8,C1:C8,D1:D8],0.05,true)
+
='''BARTLETTSTEST([A1:A8, B1:B8, C1:C8, D1:D8], 0.05, true)<br></br>
 +
 
 
{| class="wikitable"
 
{| class="wikitable"
 
|+BARTLETT'S TEST
 
|+BARTLETT'S TEST
Line 90: Line 91:
 
|P-VALUE || 0.979441777737987
 
|P-VALUE || 0.979441777737987
 
|-
 
|-
|B-CRITICAL || 7.810299999999978
+
|B-CRITICAL || 7.814684159999997
 
|-
 
|-
 
|RESULT || THE P-VALUE IS LESSER THAN THE B-CRITICAL VALUE, SO THE VARIANCES ARE JUDGED TO BE EQUAL.
 
|RESULT || THE P-VALUE IS LESSER THAN THE B-CRITICAL VALUE, SO THE VARIANCES ARE JUDGED TO BE EQUAL.
 
|}
 
|}
 +
<br></br>
 +
 +
===Comparison with other software===
 +
'''Bartlett's test to determine whether the 4 samples have significantly different population variances.<br><br>
 +
[[File:bart1.JPG]]<br><br>
 +
 +
'''SOLUTION'''<br>
 +
'''In z3:'''<br>
 +
[[File:bartz.JPG]]<br><br>
 +
 +
'''In R:'''<br>
 +
[[File:bartr.JPG]]<br><br>
 +
 +
'''In Online Software:'''<br>
 +
[[File:bartos.JPG]]<br><br>
 +
 +
'''In Online Software:'''<br>
 +
[[File:bartos2.JPG]]<br><br>
 +
 +
* z3 and the online software give the same P-value i.e 0.979.
 +
* R has a P-value of 0.9768.

Latest revision as of 07:31, 19 August 2020

BARTLETTSTEST(DataRange, ConfidenceLevel, NewTableFlag)
  • is the array of x values.
  • is the value from 0 to 1.
  • is either TRUE or FALSE. TRUE for getting results in a new cube. FALSE will display results in the same cube.

DESCRIPTION

  • Bartlett's test is used to test if k samples are from populations with equal variances.
  • Bartlett's test is sensitive to departures from normality.
  • That is, if the samples come from non-normal distributions, then Bartlett's test may simply be testing for non-normality.
 
  • B is the Bartlett's test static.
  • is the pooled variance across all groups.

RESULT

  • If p-value is greater than BCritical value, reject the null hypothesis.
  • Else, retain null hypothesis.

EXAMPLE

Spreadsheet
A B C D
1 51 82 79 85
2 87 91 84 80
3 50 92 74 65
4 48 80 98 71
5 79 52 63 67
6 61 79 83 51
7 53 73 85 63
8 54 74 58 93

=BARTLETTSTEST([A1:A8, B1:B8, C1:C8, D1:D8], 0.05, true)

BARTLETT'S TEST
DATA-0 DATA-1 DATA-2 DATA-3
MEAN 60.375 77.875 78 71.875
VARIANCE 214.26785714285714 157.55357142857142 164.57142857142858 181.55357142857142
LNVARIANCE 5.367226901229239 5.059765536486956 5.1033446922005234 5.201550769540011
COUNT 8 8 8 8
DF 7 7 7 7
1/DF 0.14285714285714285 0.14285714285714285 0.14285714285714285 0.14285714285714285
ERROR
SAMPLE DATA
DF 28
1/DF 0.03571428571428571
VARIANCE 179.48660714285714
LNVARIANCE 5.19010059312721
RESULTS
DATA
B-NUMERATOR 0.19960131136474502
B-DENOMINATOR 1.0595238095238095
B 0.18838775454650092
P-VALUE 0.979441777737987
B-CRITICAL 7.814684159999997
RESULT THE P-VALUE IS LESSER THAN THE B-CRITICAL VALUE, SO THE VARIANCES ARE JUDGED TO BE EQUAL.



Comparison with other software

Bartlett's test to determine whether the 4 samples have significantly different population variances.

Bart1.JPG

SOLUTION
In z3:
Bartz.JPG

In R:
Bartr.JPG

In Online Software:
Bartos.JPG

In Online Software:
Bartos2.JPG

  • z3 and the online software give the same P-value i.e 0.979.
  • R has a P-value of 0.9768.