Difference between revisions of "Manuals/calci/POINTAT"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div style="font-size:30px">'''POINTAT (degrees,radius,cx,cy)'''</div><br/> *<math>degrees</math> is any degree value. *<math>radius</math> is the radius value of the circle. ...")
 
 
(2 intermediate revisions by the same user not shown)
Line 8: Line 8:
 
*<math>Radius</math> is the radius of the circle.
 
*<math>Radius</math> is the radius of the circle.
 
*Consider a circle centered at the origin with radius r, and marking the point on the circle indicated by some angle  θ.
 
*Consider a circle centered at the origin with radius r, and marking the point on the circle indicated by some angle  θ.
*For the point (x, y) on a circle of radius r at an angle of <math>\theta</math>,the the function <math>SIN (\theta)</math>= <math>\frac{y}{r}</math> and <math>COS(\theta)</math>=<math>\frac{x}{r}.
+
*For the point (x, y) on a circle of radius r at an angle of <math>\theta</math>,the the function <math>SIN (\theta)</math>= <math>\frac{y}{r}</math> and <math>COS(\theta)</math>=<math>\frac{x}{r}</math>.
 
*Using this function we can find the coordinates of the point  on the circle is <math>x= rCos(\theta)</math> and <math>y= rSin(\theta)</math>.
 
*Using this function we can find the coordinates of the point  on the circle is <math>x= rCos(\theta)</math> and <math>y= rSin(\theta)</math>.
 
*On a unit circle, a circle with radius 1,<math>x=Cos(\theta)</math>  and  <math>y=Sin(\theta)</math>.
 
*On a unit circle, a circle with radius 1,<math>x=Cos(\theta)</math>  and  <math>y=Sin(\theta)</math>.
  
 
==Examples==
 
==Examples==
 +
1. POINTAT(345,5)
 +
{| class="wikitable"
 +
|4.8296291314453415 || -1.2940952255126035
 +
|}
 +
 +
2. POINTAT(280,13,2,3)
 +
{| class="wikitable"
 +
|4.257426309670089 || -9.802500789158707
 +
|}
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|v=aHaFwnqH5CU|280|center|Point }}
 +
  
 
==See Also==
 
==See Also==

Latest revision as of 14:45, 4 March 2019

POINTAT (degrees,radius,cx,cy)


  • is any degree value.
  • is the radius value of the circle.

Description

  • This function used to find the points on the circle using radius of the circle and degree value.
  • In , is any degree value.
  • is the radius of the circle.
  • Consider a circle centered at the origin with radius r, and marking the point on the circle indicated by some angle θ.
  • For the point (x, y) on a circle of radius r at an angle of ,the the function = and =.
  • Using this function we can find the coordinates of the point on the circle is and .
  • On a unit circle, a circle with radius 1, and .

Examples

1. POINTAT(345,5)

4.8296291314453415 -1.2940952255126035

2. POINTAT(280,13,2,3)

4.257426309670089 -9.802500789158707

Related Videos

Point


See Also

References

Point At