Difference between revisions of "Manuals/calci/QRDECOMPOSITION"

From ZCubes Wiki
Jump to navigation Jump to search
 
(6 intermediate revisions by one other user not shown)
Line 26: Line 26:
 
|}
 
|}
 
=QRDECOMPOSITION(A1:B2)
 
=QRDECOMPOSITION(A1:B2)
{| border="1" cellpadding="5" cellspacing="2"
+
{| border="1" cellpadding="5" cellspacing="0"
 
|-
 
|-
 
|
 
|
 
   -0.19611613513818393  -0.9805806756909202
 
   -0.19611613513818393  -0.9805806756909202
|| -0.9805806756909202 0.19611613513818393
+
||  
 +
-0.9805806756909202 0.19611613513818393
 
|-
 
|-
 
|
 
|
 
  -10.19803902718557 13.5320133245347
 
  -10.19803902718557 13.5320133245347
|| -1.1102230246251565e-15 -8.825226081218279
+
||  
 +
-1.1102230246251565e-15 -8.825226081218279
 
|}
 
|}
  
Line 56: Line 58:
 
|
 
|
 
   -0.5570860145311556 0.631547425332445 -0.5392615524675877
 
   -0.5570860145311556 0.631547425332445 -0.5392615524675877
|| -0.7427813527082074 -0.669329688618384 -0.01654176541311622
+
||  
|| -0.3713906763541037 0.3913382392381005 0.841975859527614
+
-0.7427813527082074 -0.669329688618384 -0.01654176541311622
 +
||  
 +
-0.3713906763541037 0.3913382392381005 0.841975859527614
 
|-
 
|-
| -5.385164807134504 -1.634118975958056 -3.528211425363985
+
|  
 +
-5.385164807134504 -1.634118975958056 -3.528211425363985
 
||
 
||
 
  -2.1551618871879059e-16 11.22584763714588 -9.573042563465782
 
  -2.1551618871879059e-16 11.22584763714588 -9.573042563465782
||
+
||  
 
  5.3446973501217775e-17   0 1.7054560140922779
 
  5.3446973501217775e-17   0 1.7054560140922779
 
|}
 
|}
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|v=J41Ypt6Mftc|280|center|QR Decomposition}}
 +
  
 
==See Also==
 
==See Also==
Line 70: Line 80:
 
*[[Manuals/calci/CHOLESKYFACTORIZATION| CHOLESKYFACTORIZATION]]
 
*[[Manuals/calci/CHOLESKYFACTORIZATION| CHOLESKYFACTORIZATION]]
 
*[[Manuals/calci/CONFERENCE| CONFERENCE]]
 
*[[Manuals/calci/CONFERENCE| CONFERENCE]]
 
  
 
==References==
 
==References==

Latest revision as of 13:30, 2 May 2019

QRDECOMPOSITION (Matrix)


  • is the set of values.

Description

  • This function gives the value of QR Decomposition.
  • In , is any matrix.
  • QR Decomposition is also called QR Factorization.
  • QR Decomposition is defined by the product of Orthogonal matrix and Upper Triangular matrix.
  • Consider any square matrix A may be decomposed as , where stands for orthogonal matrix and stands for Upper Triangular matrix.
  • An orthogonal matrix should satisfy , where is identity or Unitary matrix.
  • is the transpose matrix of Q.
  • If the given matrix A is non-singular, then this factorization is unique.
  • Gram-Schmidt process is one of the process of computing decomposition in QR Decomposition method.

Examples

Spreadsheet
A B
1 2 6
2 10 -15

=QRDECOMPOSITION(A1:B2)

 -0.19611613513818393   -0.9805806756909202
-0.9805806756909202	0.19611613513818393
-10.19803902718557	 13.5320133245347
-1.1102230246251565e-15	 -8.825226081218279
Spreadsheet
A B C
1 3 8 -5
2 4 -6.3 9
3 2 5 -1

=QRDECOMPOSITION(A1:C3)

 -0.5570860145311556	0.631547425332445	-0.5392615524675877
-0.7427813527082074	-0.669329688618384	-0.01654176541311622
-0.3713906763541037	0.3913382392381005	0.841975859527614
-5.385164807134504	-1.634118975958056	-3.528211425363985
-2.1551618871879059e-16	11.22584763714588	-9.573042563465782
5.3446973501217775e-17	   0	1.7054560140922779

Related Videos

QR Decomposition


See Also

References