Difference between revisions of "Manuals/calci/QUATERNION"

From ZCubes Wiki
Jump to navigation Jump to search
 
(6 intermediate revisions by the same user not shown)
Line 8: Line 8:
 
*The imaginary units are  satisfy certain conditions:
 
*The imaginary units are  satisfy certain conditions:
 
* <math>i^{2}=j^2=k^2=ijk= -1</math>.
 
* <math>i^{2}=j^2=k^2=ijk= -1</math>.
*<math>i\sdot j </math> =<math>k</math>= <math> −j \sdoti</math>,<math>j\sdot k </math>= <math>i</math> = <math>−k\sdot j</math>, <math>k \sdot i</math> = <math>j</math> = <math> −i \sdotk</math>
+
*<math>i\sdot j </math> =<math>k</math> = <math> -j \sdot i </math>  
 +
*<math>j\sdot k </math> =<math>i</math> =<math> -k\sdot j </math>  
 +
*<math>k\sdot i </math> =<math>j</math> = <math> -i\sdot k </math>
  
 
==Examples==
 
==Examples==
Line 14: Line 16:
 
#QUATERNION(8,-2,4,-5) = 8 -2 4 -5
 
#QUATERNION(8,-2,4,-5) = 8 -2 4 -5
 
#QUATERNION(-9,-12,-16,-20) = -9 -12 -16 -20
 
#QUATERNION(-9,-12,-16,-20) = -9 -12 -16 -20
 +
 +
==Related Videos==
 +
 +
{{#ev:youtube|v=ln3vI4JEArc|280|center|Quaternion}}
  
 
==See Also==
 
==See Also==

Latest revision as of 15:06, 30 November 2018

QUATERNION (a,b,c,d)


  • and are any real numbers.

Description

  • This function shows the coefficient of the Quarternion.
  • In , and are any real numbers.
  • Quartenion is a complex number of the form w + xi + yj + zk, where w, x, y, z are real numbers and i, j, k are imaginary units.
  • The imaginary units are satisfy certain conditions:
  • .
  • = =
  • = =
  • = =

Examples

  1. QUATERNION(9,2,3,4) = 9 2 3 4
  2. QUATERNION(8,-2,4,-5) = 8 -2 4 -5
  3. QUATERNION(-9,-12,-16,-20) = -9 -12 -16 -20

Related Videos

Quaternion

See Also

References

Quartenion