Difference between revisions of "Manuals/calci/MATRIX"
Jump to navigation
Jump to search
Line 128: | Line 128: | ||
|1 || 5 || 15 || 35 || 70 | |1 || 5 || 15 || 35 || 70 | ||
|} | |} | ||
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|v=4lAyqscuTc8|280|center|Types of Matrices}} | ||
==See Also== | ==See Also== |
Latest revision as of 14:08, 9 April 2019
MATRIX (TypeOfMatrix,DimensionsOfMatrix,SeedValuesToUse,IJFunction,PreParameter,IsItInternalCall)
- is the type of the matrix.
- is the order of the matrix.
- is the range of the values to display in matrix.
Description
- This function used to give different types matrix of given order.
- Matrix is an Array of numbers which arranged in rows and columns.
- There are many types of matrices.
- So we can get a desired matrix with the given order.
- Some different types of Matrices are listed below:
- ANTIDIAGONAL
- HADAMARD
- HANKEL
- POSITIVE
- NEGATIVE
- ZERO
- POSITIVE INTEGER
- NEGATIVE INTEGER
- INTEGER
- LOGICAL
- BINARY
- BOOLEAN
- RELATION
- (0,1)
- ARROWHEAD
- ANTI SYMMETRIC
- SKEW SYMMETRIC
- BLOCK DIAGONAL
- CENTRO SYMMETRIC
- CONFERENCE
- CIRCULANT
- DIAGONAL
- FROBENIUS
- HERMITIAN
- HESSENBERG
- HILBERT
- HOLLOW INTEGER
- HOLLOW NEGZEROPOS
- HOLLOW NEGATIVE
- IDENTITY
- EXCHANGE
- LEHMER
- MONOMIAL
- GENERALIZED PERMUTATION
- METZLER
- METZLER NEGZEROPOS
- MOORE
- ALTERNANT
- ONES
- REDHEFFER
- PASCAL
- PERMUTATION
- PERSYMMETRIC
- PERSYMMETRIC INTEGER
- PERSYMMETRIC BOOLEAN
- SHIFT
- SIGNATURE
- SYMMETRIC
- SYMMETRIC BOOLEAN
- SYMMETRIC INTEGER
- TOEPLITZ
- TRIANGULAR
- UPPER TRIANGULAR
- LOWER TRIANGULAR
- CAUCHY
- CIRCULANT INTEGER
- SIGN
- UPPER BIDIAGONAL
- LOWER BIDIAGONAL
- BIDIAGONAL
- PENTA DIAGONAL
- PENTA DIAGONAL NEGATIVE
- TRIDIAGONAL
- IDEMPOTENT
- VANDERMONDE
Examples
1. MATRIX("UPPERTRIANGULAR",3)
-37 | 82 | -52 |
0 | -31 | 2 |
0 | 0 | 13 |
2. MATRIXWITH(3,"negative:integer")
-100 | -29 | -51 |
-80 | -26 | -58 |
-57 | -29 | -69 |
3. MATRIX("circulant",3,12..120..13)
12 | 38 | 25 |
25 | 12 | 38 |
38 | 25 | 12 |
4.MATRIX("generalized permutation",4,100..110)
0 | 0 | 100 | 0 |
0 | 0 | 0 | 101 |
0 | 102 | 0 | 0 |
103 | 0 | 0 | 0 |
5.MATRIX("pascal",5)
1 | 1 | 1 | 1 | 1 |
1 | 2 | 3 | 4 | 5 |
1 | 3 | 6 | 10 | 15 |
1 | 4 | 10 | 20 | 35 |
1 | 5 | 15 | 35 | 70 |
Related Videos
See Also
References