Difference between revisions of "Manuals/calci/DIVIDE"

From ZCubes Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 12: Line 12:
  
 
==Divisors==
 
==Divisors==
*An integer <math>x</math> is called a divisor (or a factor) of the number <math>n</math> if dividing <math>n</math> by <math>x</math> leaves no reminder.
+
*An integer <math>x</math> is called a divisor of the number <math>n</math> if dividing <math>n</math> by <math>x</math> leaves no reminder.
 +
*Divisor of a number is also called a factor of a number.
 
*DIVISORS(10) = 1  2    5  10
 
*DIVISORS(10) = 1  2    5  10
 
*DIVISORS(1..10)
 
*DIVISORS(1..10)
Line 20: Line 21:
 
| class="sshl_f" | 1
 
| class="sshl_f" | 1
  
 +
|- class="odd"
 
| class="sshl_f" | 1
 
| class="sshl_f" | 1
 
| class="sshl_f" | 2
 
| class="sshl_f" | 2
  
 +
|- class="even"
 
| class="sshl_f" | 1
 
| class="sshl_f" | 1
 
| class="sshl_f" | 3
 
| class="sshl_f" | 3
  
 +
|- class="odd"
 
| class="sshl_f" | 1
 
| class="sshl_f" | 1
 
| class="sshl_f" | 2
 
| class="sshl_f" | 2
 
| class="sshl_f" | 4
 
| class="sshl_f" | 4
  
 +
|- class="even"
 
| class="sshl_f" | 1
 
| class="sshl_f" | 1
 
| class="sshl_f" | 5
 
| class="sshl_f" | 5
  
 +
|- class="odd"
 
| class="sshl_f" | 1
 
| class="sshl_f" | 1
 
| class="sshl_f" | 2
 
| class="sshl_f" | 2
Line 38: Line 44:
 
| class="sshl_f" | 6
 
| class="sshl_f" | 6
  
 +
|- class="even"
 
| class="sshl_f" | 1
 
| class="sshl_f" | 1
 
| class="sshl_f" | 7
 
| class="sshl_f" | 7
  
 +
|- class="odd"
 
| class="sshl_f" | 1
 
| class="sshl_f" | 1
 
| class="sshl_f" | 2
 
| class="sshl_f" | 2
Line 46: Line 54:
 
| class="sshl_f" | 8
 
| class="sshl_f" | 8
  
 +
|- class="even"
 
| class="sshl_f" | 1
 
| class="sshl_f" | 1
 
| class="sshl_f" | 3
 
| class="sshl_f" | 3
 
| class="sshl_f" | 9
 
| class="sshl_f" | 9
  
 +
|- class="odd"
 
| class="sshl_f" | 1
 
| class="sshl_f" | 1
 
| class="sshl_f" | 2
 
| class="sshl_f" | 2
Line 55: Line 65:
 
| class="sshl_f" | 10
 
| class="sshl_f" | 10
 
|}
 
|}
 +
 +
==Proper Divisor==
 +
*The proper divisors of a positive integer N are those numbers, other than N itself, that divide N without remainder.
 +
*For N > 1 they will always include 1, but for N = 1 there are no proper divisors.
 +
*The proper divisors of 6 are 1, 2, and 3.
 +
*PROPERDIVISORS(10) = 1  2  5
 +
*ALIQUOTDIVISORS(15) = 1  3  5
  
 
==Examples==
 
==Examples==
Line 61: Line 78:
 
#DIVIDE(379.45,22) = 17.24772727272727
 
#DIVIDE(379.45,22) = 17.24772727272727
 
#DIVIDE(-50,5) = -10
 
#DIVIDE(-50,5) = -10
 +
#(10006785432188888888n).divide(2665n) = 3754891344160933
  
 
==Related Videos==
 
==Related Videos==

Latest revision as of 01:21, 15 April 2020

DIVIDE ()


Description

  • This function shows the division of the numbers.
  • Division is one of the four basic operations of arithmetic.
  • Division is splitting into equal parts or groups.
  • Division is the repeated subtraction and it is the opposite of Multiplication.
  • The division of two natural numbers is the process of calculating the number of times one number is contained within one another.
  • In DIVIDE(),first number is the dividend and second number is the divisor.
  • Dividend is the number being divided.Divisor is a number that will divide the dividend exactly.
  • For example,DIVIDE(20,4),20 is the dividend and 4 is the divisor.

Divisors

  • An integer is called a divisor of the number if dividing by leaves no reminder.
  • Divisor of a number is also called a factor of a number.
  • DIVISORS(10) = 1 2 5 10
  • DIVISORS(1..10)
1
1 2
1 3
1 2 4
1 5
1 2 3 6
1 7
1 2 4 8
1 3 9
1 2 5 10

Proper Divisor

  • The proper divisors of a positive integer N are those numbers, other than N itself, that divide N without remainder.
  • For N > 1 they will always include 1, but for N = 1 there are no proper divisors.
  • The proper divisors of 6 are 1, 2, and 3.
  • PROPERDIVISORS(10) = 1 2 5
  • ALIQUOTDIVISORS(15) = 1 3 5

Examples

  1. DIVIDE(1000,50) = 20
  2. DIVIDE(300,7) = 42.857142857142854
  3. DIVIDE(379.45,22) = 17.24772727272727
  4. DIVIDE(-50,5) = -10
  5. (10006785432188888888n).divide(2665n) = 3754891344160933

Related Videos

Division

See Also

References

Divide