Difference between revisions of "Manuals/calci/BETADIST"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font size="3"><font face="Times New Roman">'''BETADIST''' ('''N''',''' alpha, beta, X, Y''')</font></font> <font ...") |
|||
(43 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''BETADIST (Number,Alpha,Beta,LowerBound,UpperBound)'''</div><br/> |
+ | *<math>Number</math> is the value between <math>LowerBound</math> and <math>UpperBound</math> | ||
+ | *<math>Alpha</math> and <math>Beta</math> are the value of the shape parameter | ||
+ | *<math>LowerBound</math> & <math>UpperBound</math> the lower and upper limit to the interval of <math>Number</math>. | ||
+ | **BETADIST(),returns the Beta Cumulative Distribution Function. | ||
− | < | + | ==Description== |
+ | *This function gives the Cumulative Beta Probability Density function. | ||
+ | *The beta distribution is a family of Continuous Probability Distributions defined on the interval [0, 1] parameterized by two positive shape parameters, denoted by <math>\alpha</math> and <math>\beta</math>. | ||
+ | *The Beta Distribution is also known as the Beta Distribution of the first kind. | ||
+ | *In <math>(Number,Alpha,Beta,LowerBound,UpperBound)</math>, <math>Number</math> is the value between <math>LowerBound</math> and <math>UpperBound</math>. | ||
+ | *Alpha is the value of the shape parameter. | ||
+ | *Beta is the value of the shape parameter | ||
+ | *<math>LowerBound</math> and <math>UpperBound</math>(optional) are the Lower and Upper limit to the interval of <math>Number</math>. | ||
+ | *Normally <math>Number</math> lies between the limit <math>LowerBound</math> and <math>UpperBound</math>, suppose when we are omitting <math>LowerBound</math> and <math>UpperBound</math> value, by default <math>Number</math> value with in 0 and 1. | ||
+ | *The Probability Density Function of the beta distribution is: | ||
+ | <math>f(x)=\frac{x^{\alpha-1}(1-x)^{ \beta-1}}{B(\alpha,\beta)},</math> where <math>0 \le x \le 1</math>; <math>\alpha,\beta >0 </math> and <math>B(\alpha,\beta)</math> is the Beta function. | ||
+ | *The formula for the Cumulative Beta Distribution is called the Incomplete Beta function ratio and it is denoted by <math>I_x</math> and is defined as : | ||
+ | <math>F(x)=I_x(\alpha,\beta)</math>=<math>\int_{0}^{x}f(x)=\frac{t^{\alpha-1}(1-t)^{ \beta-1}dt}{B(\alpha,\beta)}</math>, where <math>0 \le t \le 1</math> ; <math>\alpha,\beta>0</math> and <math>B(\alpha,\beta)</math> is the Beta function. | ||
+ | *This function will give the result as error when | ||
+ | 1.Any one of the arguments are non-numeric. | ||
+ | 2.<math>Alpha \le 0</math> or <math>Beta \le 0</math> | ||
+ | 3.<math>Number<LowerBound</math> ,<math>Number>UpperBound</math>, or <math>LowerBound=UpperBound</math> | ||
+ | *we are not mentioning the limit values <math>LowerBound</math> and <math>UpperBound</math>, | ||
+ | *By default it will consider the Standard Cumulative Beta Distribution, LowerBound = 0 and UpperBound = 1. | ||
− | + | ==ZOS== | |
− | < | + | *The syntax is to calculate BEATDIST in ZOS is <math>BETADIST (Number,Alpha,Beta,LowerBound,UpperBound)</math>. |
+ | **<math>Number</math> is the value between LowerBound and UpperBound | ||
+ | **<math>alpha</math> and <math>beta</math> are the value of the shape parameter. | ||
+ | *For e.g.,BETADIST(11..13,3,5,8,14) | ||
+ | *BETADIST(33..35,5..6,10..11,30,40) | ||
− | |||
− | + | ==Examples== | |
+ | #=BETADIST(0.4,8,10) = 0.35949234293309396 | ||
+ | #=BETADIST(3,5,9,2,6) = 0.20603810250759128 | ||
+ | #=BETADIST(9,4,2,8,11) = 0.04526748971193415 | ||
+ | #=BETADIST(5,-1,-2,4,7) = #N/A (ALPHA GREATER THAN (OR) NOT EQUAL TO 0) | ||
− | + | ==Related Videos== | |
− | + | {{#ev:youtube|aZjUTx-E0Pk|280|center|Beta Distribution}} | |
− | - | ||
− | |||
− | + | ==See Also== | |
+ | *[[Manuals/calci/BETAINV | BETAINV]] | ||
+ | *[[Manuals/calci/ALL | All Functions]] | ||
− | + | ==References== | |
− | + | [http://en.wikipedia.org/wiki/Beta_distribution Beta Distribution] | |
− | |||
− | |||
− | |||
− | + | *[[Z_API_Functions | List of Main Z Functions]] | |
− | + | *[[ Z3 | Z3 home ]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 03:57, 2 June 2020
BETADIST (Number,Alpha,Beta,LowerBound,UpperBound)
- is the value between and
- and are the value of the shape parameter
- & the lower and upper limit to the interval of .
- BETADIST(),returns the Beta Cumulative Distribution Function.
Description
- This function gives the Cumulative Beta Probability Density function.
- The beta distribution is a family of Continuous Probability Distributions defined on the interval [0, 1] parameterized by two positive shape parameters, denoted by and .
- The Beta Distribution is also known as the Beta Distribution of the first kind.
- In , is the value between and .
- Alpha is the value of the shape parameter.
- Beta is the value of the shape parameter
- and (optional) are the Lower and Upper limit to the interval of .
- Normally lies between the limit and , suppose when we are omitting and value, by default value with in 0 and 1.
- The Probability Density Function of the beta distribution is:
where ; and is the Beta function.
- The formula for the Cumulative Beta Distribution is called the Incomplete Beta function ratio and it is denoted by and is defined as :
=, where ; and is the Beta function.
- This function will give the result as error when
1.Any one of the arguments are non-numeric. 2. or 3. ,, or
- we are not mentioning the limit values and ,
- By default it will consider the Standard Cumulative Beta Distribution, LowerBound = 0 and UpperBound = 1.
ZOS
- The syntax is to calculate BEATDIST in ZOS is .
- is the value between LowerBound and UpperBound
- and are the value of the shape parameter.
- For e.g.,BETADIST(11..13,3,5,8,14)
- BETADIST(33..35,5..6,10..11,30,40)
Examples
- =BETADIST(0.4,8,10) = 0.35949234293309396
- =BETADIST(3,5,9,2,6) = 0.20603810250759128
- =BETADIST(9,4,2,8,11) = 0.04526748971193415
- =BETADIST(5,-1,-2,4,7) = #N/A (ALPHA GREATER THAN (OR) NOT EQUAL TO 0)
Related Videos
See Also
References