Difference between revisions of "Manuals/calci/ERF"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#000000"><font face="Arial, sans-serif"><font size="2">'''ERF'''</font></font><font face="Arial, sans-se...")
 
 
(23 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''ERF(a,b,accuracy)'''</div><br/>
 +
*<math>a</math> is the lower limit and <math> b </math> is the upper limit.
 +
*<math>accuracy</math>  gives accurate value of the solution
 +
**ERF(), returns the Error Function.
  
<font color="#000000"><font face="Arial, sans-serif"><font size="2">'''ERF'''</font></font><font face="Arial, sans-serif"><font size="2">(LL, UL)</font></font></font>
+
==Description==
 +
*This function gives the value of the error function .
 +
*Error function is the special function which is encountered in integrating the normal distribution.
 +
*In <math>ERF(a,b,accuracy)</math>,<math>a</math> is the lower limit of the integrating function and <math>b</math> is the upper limit of the integrating function.
 +
*Also <math>b</math> is optional. When we are omitting the <math>b</math> value, then the  integral of the error function between 0 and the given <math>a</math> value is returned otherwise it will consider the given <math>a</math> and <math>b</math> values.
 +
*This function is also called Gauss error function.
 +
*<math>ERF </math>is defined by:<math>ERF(z)=\frac {2}{\sqrt{\pi}}\int\limits_{0}^{z}e^{-t^2} dt</math>       
 +
*<math>ERF(a,b)=\frac{2}{\sqrt{\pi}}\int\limits_{a}^{b}e^{-t^2} dt=ERF(b)-ERF(a)</math>.
 +
*In this case <math>a</math> is the lower limit and <math>b</math> is the upper limit.
 +
*This function will return the result as error when
 +
1.any one of the argument is non-numeric.
 +
2.<math>a</math> or <math>b</math> is negative.
  
<font color="#000000"><font face="Arial, sans-serif"><font size="2">Where LL(lower limit) is the lower bound and UL(upper limit) is the upper bound for the integrating ERF.</font></font></font>
+
==ZOS==
 +
*The syntax is to calculate error function in ZOS is <math>ERF(a,b,accuracy)</math>.
 +
**<math>a</math> is the lower limit and <math> b </math> is the upper limit.
 +
**<math>accuracy</math> gives accurate value of the solution.
 +
*For e.g.,ERF(2,3),ERF(2,3,0.001)
  
</div>
+
==Examples==
----
+
#ERF(1,2)=0.15262147206923793
<div id="7SpaceContent" class="zcontent" align="left">
+
#ERF(3,2)=0.004655644484048649
 +
#ERF(0,1)=0.8427007929497148
 +
#ERF(5)=0.9999999999984626
 +
#ERF(-3)=-0.9999779095030014
  
* <font color="#000000"><font face="Arial, sans-serif"><font size="2">ERF returns the zero(error) value, whenever the LL and UL is nonnumeric or negative.</font></font></font>
+
==Related Videos==
  
</div>
+
{{#ev:youtube|PBSFXukqztU|280|center|Error Function}}
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
  
ERF
+
==See Also==
 +
*[[Manuals/calci/ERFC  | ERFC ]]
  
</div></div>
+
==References==
----
+
[http://en.wikipedia.org/wiki/Error_function Error Function]
<div id="8SpaceContent" class="zcontent" align="left">
 
  
[javascript:ToggleDiv('divExpCollAsst_4') <font color="#000000"><font face="Arial, sans-serif"><font size="2">Lets see an example,</font></font></font>]
 
  
[javascript:ToggleDiv('divExpCollAsst_4') <font color="#000000"><font face="Arial, sans-serif"><font size="2">ERF(LL, UL)</font></font></font>]
 
  
<font face="Tahoma, sans-serif"><font size="1">[javascript:ToggleDiv('divExpCollAsst_4') <font color="#000000"><font face="Arial, sans-serif"><font size="2"><nowiki>=ERF(0.525) 0.5422</nowiki></font></font></font>]</font></font>
 
  
[javascript:ToggleDiv('divExpCollAsst_4') <font color="#000000"><font face="Arial, sans-serif"><font size="2"><nowiki>=ERF(2) is 0.9953</nowiki></font></font></font>]
+
*[[Z_API_Functions | List of Main Z Functions]]
  
</div>
+
*[[ Z3 Z3 home ]]
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left"><font color="#000000"><font face="Arial, sans-serif"><font size="2">
 
 
 
<font color="#000000"><font face="Arial, sans-serif"><font size="2">This function shows the error function integrated between the lower limit and the upper limit of a function.</font></font></font>
 
 
 
</font></font></font></div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|- class="even"
 
| class="   " |
 
<div id="1Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 0.5422
 
| class="sshl_f" | 0.9953
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" |
 
| class="sshl_f SelectTD SelectTD" |
 
<div id="1Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="1Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 

Latest revision as of 03:11, 29 September 2021

ERF(a,b,accuracy)


  • is the lower limit and is the upper limit.
  • gives accurate value of the solution
    • ERF(), returns the Error Function.

Description

  • This function gives the value of the error function .
  • Error function is the special function which is encountered in integrating the normal distribution.
  • In , is the lower limit of the integrating function and is the upper limit of the integrating function.
  • Also is optional. When we are omitting the value, then the integral of the error function between 0 and the given value is returned otherwise it will consider the given and values.
  • This function is also called Gauss error function.
  • is defined by:
  • .
  • In this case is the lower limit and is the upper limit.
  • This function will return the result as error when
1.any one of the argument is non-numeric.
2. or  is negative.

ZOS

  • The syntax is to calculate error function in ZOS is .
    • is the lower limit and is the upper limit.
    • gives accurate value of the solution.
  • For e.g.,ERF(2,3),ERF(2,3,0.001)

Examples

  1. ERF(1,2)=0.15262147206923793
  2. ERF(3,2)=0.004655644484048649
  3. ERF(0,1)=0.8427007929497148
  4. ERF(5)=0.9999999999984626
  5. ERF(-3)=-0.9999779095030014

Related Videos

Error Function

See Also

References

Error Function