Difference between revisions of "Manuals/calci/ERFC"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''ERFC(LL'''</font></font></font><font color="#484...") |
|||
(12 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''ERFC(a,accuracy)'''</div><br/> |
+ | *<math>a</math> is the lower limit. | ||
+ | *<math>accuracy</math> gives the accurate value of the solution. | ||
+ | **ERFC(),returns the Complementary Error Function | ||
− | |||
− | < | + | ==Description== |
− | -- | + | *This function gives the complementary ERF function. |
− | < | + | *The complementary error function is the error function with the limit x and infinity. It is denoted by erfc(x). |
+ | *It is also called scaled complementary error function. | ||
+ | *ERFC is defined by: | ||
+ | <math>ERFC(x)=\frac{2}{\sqrt{\pi}}\int\limits_{x}^{\infty}e^{-t^2} dt=1-ERF(x)</math>. | ||
+ | *This function will return the result as error when a is nonnumeric or negative. | ||
− | * < | + | ==ZOS== |
+ | *The syntax is to calculate complementary error function in ZOS is <math>ERFC(a,accuracy)</math>. | ||
+ | **<math>a</math> is the lower limit. | ||
+ | **<math>accuracy</math> gives the accurate value of the solution. | ||
+ | *For e.g.,ERFC(10),ERFC(10,0.01) | ||
− | + | ==Examples== | |
+ | #ERFC(3)=0.000022090496998639075 | ||
+ | #ERFC(2)=0.004677734981047288 | ||
+ | #ERFC(0)=1 | ||
+ | #ERFC(-2)=1.9953222650189528 | ||
− | + | ==Related Videos== | |
− | + | {{#ev:youtube|PBSFXukqztU|280|center|Complimentary Error Function}} | |
− | + | ==See Also== | |
− | + | *[[Manuals/calci/ERF | ERF ]] | |
− | |||
− | + | ==References== | |
+ | [http://en.wikipedia.org/wiki/Error_function Error Function ] | ||
− | |||
− | |||
− | |||
− | |||
− | + | *[[Z_API_Functions | List of Main Z Functions]] | |
− | + | *[[ Z3 | Z3 home ]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 03:14, 29 September 2021
ERFC(a,accuracy)
- is the lower limit.
- gives the accurate value of the solution.
- ERFC(),returns the Complementary Error Function
Description
- This function gives the complementary ERF function.
- The complementary error function is the error function with the limit x and infinity. It is denoted by erfc(x).
- It is also called scaled complementary error function.
- ERFC is defined by:
.
- This function will return the result as error when a is nonnumeric or negative.
ZOS
- The syntax is to calculate complementary error function in ZOS is .
- is the lower limit.
- gives the accurate value of the solution.
- For e.g.,ERFC(10),ERFC(10,0.01)
Examples
- ERFC(3)=0.000022090496998639075
- ERFC(2)=0.004677734981047288
- ERFC(0)=1
- ERFC(-2)=1.9953222650189528
Related Videos
See Also
References