Difference between revisions of "Manuals/calci/FTESTANALYSIS"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''FTESTANALYSIS'''(Array1, Array2, Alpha, NewTableFlag) where, '''Array1 and Array2 '''- Input range should...")
 
 
(16 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''FTESTANALYSIS (Array1,Array2,Alpha,NewTableFlag)'''</div><br/>
 +
*<math>Array1</math> and <math>Array2 </math> are array of data.
 +
*<math>Alpha</math>  is the significance level.
 +
*<math>Newtableflag</math>  is the logical value.
 +
**FTESTANALYSIS(), compares the variances between two group of data.
  
'''FTESTANALYSIS'''(Array1, Array2, Alpha, NewTableFlag)
+
==Description==
 +
*This function gives the analysis of variance.
 +
*This statistics used to determine the significant difference of three or more variables or multivariate collected from experimental
 +
research.
 +
*So this analysis is depending on the hypothesis.
 +
*The hypotheses for this test are
 +
<math>H_0: \sigma_1 = \sigma_2 </math>  (null hypothesis, variances are equal)
 +
<math>H_0: \sigma_1 \ne \sigma_2 </math>  (alternative hypothesis, variances are not equal)
 +
*For example, the comparison of SCORES across GROUPS,where there are two groups.
 +
*The purpose is to determine if the mean SCORE on a test is different for the two groups tested (i.e., control and treatment groups)
 +
*In FTESTANALYSIS (Array1,Array2,Alpha,NewTableFlag) where <math>Array1</math> is the data of  first array, <math>Array2</math> is the data of second array.
 +
*<math> Alpha </math> is the significance level which ranges from 0 to 1.
 +
*<math> Newtableflag </math> is the logical value like TRUE or FALSE.
 +
*TRUE is indicating the result will display in new worksheet.Suppose we are omitted the lv value it will consider the value as FALSE.
 +
*The F statistic of this function calculated by:
 +
<math>\frac {Sx^2}{Sy^2}</math> has an F-distribution with n−1 and m−1 degrees of freedom.
 +
*Also <math>Sx^2 </math> is the sample variance of first set of values.
 +
*And <math>Sy^2 </math> is the sample variance of second set of values.
 +
*If the f-value from the test is higher than the f-critical value then the null hypothesis should be rejected and the variances are unequal.
 +
*So the following cases will occur:
 +
*If the variances are assumed to NOT be equal, proceed with the t-test that assumes non-equal variances.
 +
*If the variances are assumed to be equal, proceed with the t-test that assumes equal variances.
 +
*In this function the array may be any numbers, names, or references that contains numbers.
 +
*values are not considered if the array contains any text, logical values or empty cells.
 +
When the <math>Array1</math> or <math>Array2</math> is less than 2 or the variance of the array value is zero, then this function will return the result as error.
  
where,
+
==ZOS==
 +
*The syntax is to use this function in ZOS is <math>FTESTANALYSIS (Array1,Array2,Alpha,NewTableFlag)</math>
 +
**<math>Array1</math> and <math>Array2 </math> are array of data.
 +
**<math>Alpha</math>  is the significance level.
 +
**<math>Newtableflag</math>  is the logical value.
 +
*For e.g.,FTESTANALYSIS([17,22,26,31,49],[50,47,45,13,24],0.4,true)
 +
*FTESTANALYSIS([24..30],[45..51],0.4,true)
  
'''Array1 and Array2 '''- Input range should be one  blocks.
+
==Examples==
 +
1.
 +
{| class="wikitable"
 +
|+Spreadsheet
 +
|-
 +
! !! A !! B
 +
|-
 +
! 1
 +
|15 || 21
 +
|-
 +
! 2
 +
|27 || 12
 +
|-
 +
! 3
 +
|19 || 30
 +
|-
 +
! 4
 +
|32 || 11
 +
|}
 +
=FTESTANALYSIS(A1:A4,B1:B4,0.5,TRUE)
  
'''Alpha''' - is a constant and value should be in between 0 and 1.
+
{| class="wikitable"
 +
|+Result
 +
|-  
 +
! !!Variable1 !! Variable2
 +
|-
 +
! Mean
 +
| 23.25 || 18.5
 +
|-
 +
! Variance
 +
| 58.916666666666664 || 79
 +
|-
 +
! Observations
 +
| 4 || 4
 +
|-
 +
! Degree Of Freedom
 +
| 3 || 3
 +
|-
 +
! F-Value
 +
| 0.7457805907172995 ||
 +
|-
 +
! P(F<=f) one-tail
 +
| 0.407624533735915 ||
 +
|-
 +
! F Critical one-tail
 +
| 1 ||
 +
|}
 +
  
'''NewTableFlag''' - is the TRUE or FALSE.If set as TRUE,the result in new sheet.If NewTableFlag is omitted, it assumed to be FALSE.
+
2.
 +
{| class="wikitable"
 +
|+Spreadsheet
 +
|-
 +
! !! A !! B
 +
|-
 +
! 1
 +
|5 || 10
 +
|-
 +
! 2
 +
|8 || 20
 +
|-
 +
! 3
 +
|12 || 30
 +
|-
 +
! 4
 +
|45 || 40
 +
|-
 +
! 5
 +
|23 || 50
 +
|}
  
</div>
+
=FTEST(A1:A5,B1:B5,0.30,false)
----
+
{| class="wikitable"  
<div id="1SpaceContent" class="zcontent" align="left">F-Test Two Sample for Variances is also knowns as Fisher test. It compares the variances between two groups of data. Variance is a measure of how much the values are dispersed around the mean value.</div>
+
|+Result
----
+
|-  
<div id="7SpaceContent" class="zcontent" align="left">
+
! !!Variable1 !! Variable2
 
+
|-
If Alpha &lt; 0 or Alpha &gt;1, FTESTANALYSIS returns the #ERROR.
+
! Mean
 
+
| 18.6 || 30
</div>
+
|-
----
+
! Variance
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
+
| 264.29999999999995 || 250
 
+
|-
F-TEST TWO SAMPLE FOR VARIANCES
+
! Observations
 
+
| 5 || 5
</div></div>
+
|-
----
+
! Degree Of Freedom
<div id="8SpaceContent" class="zcontent" align="left">
+
| 4 || 4
 
+
|-
Lets see an example in (Column3, Row1)
+
! F-Value
 
+
| 1.0572 ||
<nowiki>=FTESTANALYSIS(R1C1:R6C1, R1C2:R6C2, 0.05, TRUE)</nowiki>
+
|-
 +
! P(F<=f) one-tail
 +
| 0.4791517866106137 ||
 +
|-
 +
! F Critical one-tail
 +
| 1.7528541706121352 ||
 +
|}
  
It returns the result in new sheet(5Sapce).
+
==Related Videos==
  
<nowiki>=FTESTANALYSIS(R1C1:R3C2, R1C2:R3C2, -1, TRUE)</nowiki>
+
{{#ev:youtube|G_RDxAZJ-ug|280|center|F Distribution}}
  
It returns the #ERROR(Alpha =-1).
+
==See Also==
 +
*[[Manuals/calci/FTEST  | FTEST ]]
 +
*[[Manuals/calci/FDIST  | FDIST ]]
 +
*[[Manuals/calci/FINV  | FINV ]]
  
</div>
+
==References==
----
+
[http://en.wikipedia.org/wiki/F-test  F Test]
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
  
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| Column2
 
| class="  " | Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| 8
 
| 3
 
| class="sshl_f" | 5Space
 
| class="sshl_f" | 5
 
|- class="even"
 
| class="  " | Row2
 
| 7
 
| 8
 
| class="  " | 9
 
| class="sshl_f" | 128
 
|- class="odd"
 
| Row3
 
| 12
 
| 9
 
| 14
 
| class="sshl_f    " | 15
 
|- class="even"
 
| Row4
 
| class=" " | 17
 
| class=" " | 18
 
| class="sshl_f" | 10000
 
| class="  " | 20
 
|- class="odd"
 
| class=" " | Row5
 
| class=" " | 44
 
| class=" " | 35
 
| class="sshl_f" | #ERROR
 
| 168
 
|- class="even"
 
| Row6
 
| class=" " | 6
 
| class=" " | 2
 
| class="      SelectTD1 ChangeBGColor SelectTD1" |
 
<div id="2Space_Handle" class="zhandles" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" class="zhandles" title="Click and Drag over to AutoFill other cells."></div><div id="2Space_Drag" class="zhandles" title="Click and Drag to Move/Copy Area.">[[Image:copy-cube.gif]]  </div>1.619775
 
| 0.525322
 
|}
 
  
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left">
 
  
{| class="SpreadSheet blue"
+
*[[Z_API_Functions | List of Main Z Functions]]
|+ <br />F-Test Two-Sample for Variances
 
|- class="even"
 
!
 
! Variable1
 
! Variable2
 
|- class="odd"
 
| Mean
 
| 15.666666666666666
 
| 12.5
 
|- class="even"
 
| Variance
 
| 209.0666666666667
 
| 153.9
 
|- class="odd"
 
| Observations
 
| 6
 
| 6
 
|- class="even"
 
| Degree Of Freedom
 
| 5
 
| 5
 
|- class="odd"
 
| F Value
 
| 1.3584578730777563
 
|- class="even"
 
| P(F&lt;=f) one-tail
 
| 0.37247330494764646
 
|- class="odd"
 
| F Critical one-tail
 
| NaN
 
|}
 
  
</div>
+
*[[ Z3 |  Z3 home ]]
----
 

Latest revision as of 16:07, 7 August 2018

FTESTANALYSIS (Array1,Array2,Alpha,NewTableFlag)


  • and are array of data.
  • is the significance level.
  • is the logical value.
    • FTESTANALYSIS(), compares the variances between two group of data.

Description

  • This function gives the analysis of variance.
  • This statistics used to determine the significant difference of three or more variables or multivariate collected from experimental

research.

  • So this analysis is depending on the hypothesis.
  • The hypotheses for this test are
  (null hypothesis, variances are equal)
  (alternative hypothesis, variances are not equal)
  • For example, the comparison of SCORES across GROUPS,where there are two groups.
  • The purpose is to determine if the mean SCORE on a test is different for the two groups tested (i.e., control and treatment groups)
  • In FTESTANALYSIS (Array1,Array2,Alpha,NewTableFlag) where is the data of first array, is the data of second array.
  • is the significance level which ranges from 0 to 1.
  • is the logical value like TRUE or FALSE.
  • TRUE is indicating the result will display in new worksheet.Suppose we are omitted the lv value it will consider the value as FALSE.
  • The F statistic of this function calculated by:

has an F-distribution with n−1 and m−1 degrees of freedom.

  • Also is the sample variance of first set of values.
  • And is the sample variance of second set of values.
  • If the f-value from the test is higher than the f-critical value then the null hypothesis should be rejected and the variances are unequal.
  • So the following cases will occur:
  • If the variances are assumed to NOT be equal, proceed with the t-test that assumes non-equal variances.
  • If the variances are assumed to be equal, proceed with the t-test that assumes equal variances.
  • In this function the array may be any numbers, names, or references that contains numbers.
  • values are not considered if the array contains any text, logical values or empty cells.

When the or is less than 2 or the variance of the array value is zero, then this function will return the result as error.

ZOS

  • The syntax is to use this function in ZOS is
    • and are array of data.
    • is the significance level.
    • is the logical value.
  • For e.g.,FTESTANALYSIS([17,22,26,31,49],[50,47,45,13,24],0.4,true)
  • FTESTANALYSIS([24..30],[45..51],0.4,true)

Examples

1.

Spreadsheet
A B
1 15 21
2 27 12
3 19 30
4 32 11

=FTESTANALYSIS(A1:A4,B1:B4,0.5,TRUE)

Result
Variable1 Variable2
Mean 23.25 18.5
Variance 58.916666666666664 79
Observations 4 4
Degree Of Freedom 3 3
F-Value 0.7457805907172995
P(F<=f) one-tail 0.407624533735915
F Critical one-tail 1


2.

Spreadsheet
A B
1 5 10
2 8 20
3 12 30
4 45 40
5 23 50

=FTEST(A1:A5,B1:B5,0.30,false)

Result
Variable1 Variable2
Mean 18.6 30
Variance 264.29999999999995 250
Observations 5 5
Degree Of Freedom 4 4
F-Value 1.0572
P(F<=f) one-tail 0.4791517866106137
F Critical one-tail 1.7528541706121352

Related Videos

F Distribution

See Also

References

F Test