Difference between revisions of "Manuals/calci/GAMMADIST"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left">  <font color="#000000">'''GAMMADIST(X, Alpha, Beta, Cum)'''</font> <br /> <font color="#000000">Where X is the...")
 
 
(30 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"> 
+
<div style="font-size:30px">'''GAMMADIST(x,alpha,beta,cumulative,accuracy)'''</div><br/>
 +
*<math>x</math> is the value of the distribution.
 +
*<math>alpha</math> and <math>beta</math> are the value of the parameters.
 +
*<math>cumulative</math> is the logical value like true or false.
 +
*<math>accuracy</math> gives accurate value of the solution.
 +
**GAMMADIST(), returns the gamma distribution.
  
<font color="#000000">'''GAMMADIST(X, Alpha, Beta, Cum)'''</font>
+
==Description==
 +
*This function gives the value of the Gamma Distribution.
 +
*The Gamma Distribution can be used in a queuing models like, the amount of rainfall accumulated in a reservoir.
 +
*This distribution is the Continuous Probability Distribution with two parameters <math>\alpha</math> and <math>\beta</math>.
 +
*In  <math>GAMMADIST(x,alpha,beta,cumulative,accuracy)</math>, <math>x</math> is the value of the distribution, <math>\alpha</math> is called shape parameter and <math>\beta</math> is the rate parameter of the distribution and <math>cumulative</math> is the logical value like TRUE or FALSE.
 +
*If <math>cumulative</math> is TRUE, then this function gives the Cumulative Distribution value and if is FALSE then it gives the Probability Density Function.
 +
*<math>cumulative</math> gives accurate value of the solution.
 +
*The gamma function is defined by :
 +
<math>Gamma(t) = \int\limits_{0}^{\infty}x^{t-1} e^{-x} dx</math>.
 +
*It is for all complex numbers except the negative integers and zero.
 +
*The Probability Density Function of Gamma function using Shape, rate parameters is:
 +
<math> f(x; \alpha,\beta)=\frac{x^{\alpha-1} e^{-\frac {x}{\beta}}}{\beta^{\alpha} \Gamma(\alpha)}</math>, for
 +
:<math>x, \alpha , \beta > 0 </math>, where <math>e</math> is the natural number(e = 2.71828...),  <math>\alpha</math> is the number of occurrences of an event, and <math>\Gamma(\alpha)</math> is the Gamma function.
 +
*The Standard Gamma Probability Density function is:
 +
<math>f(x,\alpha)=\frac{x^{\alpha-1} e^{-x}}{\Gamma(\alpha)}</math>.
 +
*The  Cumulative Distribution  Function of Gamma is :
 +
<math>F(x;\alpha,\beta)=\frac{\gamma(\alpha,\frac{x}{\beta})}{\Gamma(\alpha)}</math>, or
 +
:<math>F(x;\alpha,\beta)= e^{-\frac {x}{\beta}} \sum_{i=k}^{\infty} \frac{1}{i!} (\frac{x}{\beta})^i</math> for any positive integer <math>k</math>.
 +
*When alpha is a positive integer, then the distribution is called Erlang distribution.
 +
*If the shape parameter <math>\alpha</math> is held fixed, the resulting one-parameter family of distributions is a natural exponential family.
 +
*For a positive integer <math>n</math>, when <math>\alpha =\frac{n}{2}</math>, <math>\beta = 2</math>, and <math>cu= TRUE</math>, GAMMADIST returns (1 - CHIDIST(x)) with <math>n</math> degrees of freedom.
 +
*This function shows the result as error when
 +
1.Any one of the argument is non numeric
 +
2.<math>x<0</math>, <math>\alpha \le 0</math> or <math>\beta \le 0</math>.
  
<br />
+
==ZOS==
 +
*The syntax is to calculate GAMMADIST in ZOS is <math>GAMMADIST(x,alpha,beta,cumulative,accuracy)</math>.
 +
**<math>x</math> is the value of the distribution,
 +
**<math>alpha</math> and <math>beta</math> are the value of the parameters
 +
**<math>cumulative</math> is the logical value like true or false.
 +
**<math>accuracy</math> gives accurate value of the solution.
 +
*For e.g.,GAMMADIST(10.45,2.8,6.4,TRUE,0.9)
 +
GAMMADIST(10.45,2.8,6.4,FALSE,0.9)
 +
{{#ev:youtube|l_qRjj8bUdw|280|center|Gamma Distribution}}
  
<font color="#000000">Where X is the value to evaluate the distribution, Alpha and Beta are the parameters and Cum is the logical value.</font>
+
==Examples==
 +
#GAMMADIST(8.15372,5,7,TRUE)=0.006867292
 +
#GAMMADIST(20.78542,2,6,TRUE)=0.860283293
 +
#GAMMADIST(20.78542,2,6,FALSE)=0.01806997
 +
#GAMMADIST(45.6523,9,4,FALSE)=0.019724471
 +
#GAMMADIST(8.15372,5,7,TRUE,0.5)= 0.00693316259
 +
#GAMMADIST(8.15372,5,7,TRUE,0.9)=0.0067648564
  
</div>
+
==Related Videos==
----
 
<div id="1SpaceContent" class="zcontent" align="left"><font color="#000000">This function returns the gamma distribution. It is commonly used in queuing analysis.</font></div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
  
<font size="3" color="#000000"> </font>
+
{{#ev:youtube|SAMTXAAKeug|280|center|GAMMA Distribution}}
  
* <font color="#000000">X, Alpha and Beta should be numeric.</font>
+
==See Also==
* <font color="#000000">GAMMADIST shows the error value when X &lt; 0, Alpha ≤ 0 or Beta ≤ 0</font>
+
*[[Manuals/calci/DATE  | DATE ]]
 +
*[[Manuals/calci/DAYS360  | DAYS360]]
 +
*[[Manuals/calci/DATEVALUE  | DATEVALUE]]
  
<font size="3" color="#000000">The equation for the gamma probability density function is: </font>
+
==References==
 +
[http://en.wikipedia.org/wiki/Gamma_distribution  Gamma Distribution]
  
[[Image:default.aspx|Equation]]
 
  
The standard gamma probability density function is:
 
  
[[Image:default.aspx|Equation]]
+
*[[Z_API_Functions | List of Main Z Functions]]
  
</div>
+
*[[ Z3 |   Z3 home ]]
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">GAMMADIST </div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#000000">GAMMADIST(X, Alpha, Beta, Cum)</font>
 
 
 
<font color="#000000">'''B'''</font>
 
 
 
<font color="#000000">9.00002561</font>
 
 
 
<font color="#000000">8</font>
 
 
 
<font color="#000000">2</font>
 
 
 
<br />
 
 
 
<font color="#000000"><nowiki>=GAMMADIST(B2,B3,B4,FALSE) is 0.041182</nowiki></font>
 
 
 
<font color="#000000"><nowiki>=GAMMADIST(B2,B3,B4,TRUE) is 0.086593</nowiki></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left"><div>
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| Column1
 
| class="        " | Column2
 
| class="    " | Column3
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 9.00002561
 
| class="sshl_f" | 0.041182
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 8
 
| class="sshl_f" | 0.086593
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" | 2
 
| class="SelectTD" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
|- class="odd"
 
| class="sshl_f" | Row5
 
|
 
| class="  " |
 
|
 
|- class="even"
 
| class=" " | Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|
 
|}
 
 
 
<div align="left"></div>''''''</div></div>
 
----
 

Latest revision as of 16:08, 7 August 2018

GAMMADIST(x,alpha,beta,cumulative,accuracy)


  • is the value of the distribution.
  • and are the value of the parameters.
  • is the logical value like true or false.
  • gives accurate value of the solution.
    • GAMMADIST(), returns the gamma distribution.

Description

  • This function gives the value of the Gamma Distribution.
  • The Gamma Distribution can be used in a queuing models like, the amount of rainfall accumulated in a reservoir.
  • This distribution is the Continuous Probability Distribution with two parameters and .
  • In , is the value of the distribution, is called shape parameter and is the rate parameter of the distribution and is the logical value like TRUE or FALSE.
  • If is TRUE, then this function gives the Cumulative Distribution value and if is FALSE then it gives the Probability Density Function.
  • gives accurate value of the solution.
  • The gamma function is defined by :

.

  • It is for all complex numbers except the negative integers and zero.
  • The Probability Density Function of Gamma function using Shape, rate parameters is:

, for

, where is the natural number(e = 2.71828...), is the number of occurrences of an event, and is the Gamma function.
  • The Standard Gamma Probability Density function is:

.

  • The Cumulative Distribution Function of Gamma is :

, or

for any positive integer .
  • When alpha is a positive integer, then the distribution is called Erlang distribution.
  • If the shape parameter is held fixed, the resulting one-parameter family of distributions is a natural exponential family.
  • For a positive integer , when , , and , GAMMADIST returns (1 - CHIDIST(x)) with degrees of freedom.
  • This function shows the result as error when
1.Any one of the argument is non numeric
2.,  or .

ZOS

  • The syntax is to calculate GAMMADIST in ZOS is .
    • is the value of the distribution,
    • and are the value of the parameters
    • is the logical value like true or false.
    • gives accurate value of the solution.
  • For e.g.,GAMMADIST(10.45,2.8,6.4,TRUE,0.9)

GAMMADIST(10.45,2.8,6.4,FALSE,0.9)

Gamma Distribution

Examples

  1. GAMMADIST(8.15372,5,7,TRUE)=0.006867292
  2. GAMMADIST(20.78542,2,6,TRUE)=0.860283293
  3. GAMMADIST(20.78542,2,6,FALSE)=0.01806997
  4. GAMMADIST(45.6523,9,4,FALSE)=0.019724471
  5. GAMMADIST(8.15372,5,7,TRUE,0.5)= 0.00693316259
  6. GAMMADIST(8.15372,5,7,TRUE,0.9)=0.0067648564

Related Videos

GAMMA Distribution

See Also

References

Gamma Distribution