Difference between revisions of "Manuals/calci/IMARGUMENT"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#000000"><font face="Arial, sans-serif"><font size="2">'''IMARGUMENT'''</font></font><font face="Arial, sa...") |
|||
(24 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''IMARGUMENT(Complexnumber)'''</div><br/> |
+ | *<math>Complexnumber</math> is of the form <math>z=x+iy</math>. | ||
+ | **IMARGUMENT(), returns the argument theta, an angle expressed in radians | ||
− | < | + | ==Description== |
+ | *This function gives the principal value of an argument of a complex-valued expression <math>z</math>. | ||
+ | * i.e The angle from the positive axis to the line segment is called the Argument of a complex number. | ||
+ | *In this function angle value is in Radians. | ||
+ | *Here <math>IMARGUMENT(Complexnumber)</math>, Where Complexnumber in the form of <math>z=x+iy</math>. i.e <math>x</math> & <math>y</math> are the real numbers. | ||
+ | *<math>I</math> imaginary unit .<math>i=\sqrt{-1}</math>. | ||
+ | *An argument of the complex number <math>z = x + iy</math> is any real quantity <math>\phi</math> such that <math>z = x + i y</math> = <math>r cos(\phi) + i r sin(\phi)</math> for some positive real number <math>r</math>. | ||
+ | *Where <math>r = |z| = \sqrt{x^2+y^2}</math> and <math>\phi \in (-\pi,\pi]</math>. | ||
+ | *The argument of a complex number is calculated by <math>arg(z)= tan^{-1}(\frac{y}{x}) =\theta</math> in Radians. | ||
+ | *To change the Radian value to Degree we can use DEGREES function or we can multiply the answer with <math>\frac{180}{\pi}</math>. | ||
+ | *We can use [[Manuals/calci/COMPLEX| COMPLEX]] function to convert real and imaginary number in to a complex number. | ||
− | </ | + | ==ZOS== |
− | + | *The syntax is to calculate argument of a complex number in ZOS is <math>IMARGUMENT(Complexnumber)</math>. | |
− | < | + | **<math>Complexnumber</math> is of the form <math>z=x+iy</math>. |
+ | *For e.g.,IMARGUMENT("6.72+1.5i") | ||
+ | {{#ev:youtube|oO4FgWYhIhw|280|center|Imargument}} | ||
− | + | ==Examples== | |
− | + | #IMARGUMENT("3-2i") = -0.5880026035475675 | |
+ | #IMARGUMENT("5+6i") = 0.8760580505981934 | ||
+ | #IMARGUMENT("2") = 0 | ||
+ | #IMARGUMENT("4i") = 1.5707963267948966 | ||
+ | #DEGREES(IMARGUMENT("2+2i")) = 45° | ||
− | + | ==Related Videos== | |
− | + | {{#ev:youtube|FwuPXchH2rA|280|center|Complex Number Analysis}} | |
− | + | ==See Also== | |
− | + | *[[Manuals/calci/IMAGINARY | IMAGINARY ]] | |
− | + | *[[Manuals/calci/IMREAL | IMREAL]] | |
+ | *[[Manuals/calci/IMSUM | IMSUM ]] | ||
− | + | ==References== | |
+ | *[http://mathworld.wolfram.com/ComplexArgument.html Complex Argument] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | *[[Z_API_Functions | List of Main Z Functions]] | |
− | + | *[[ Z3 | Z3 home ]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 03:18, 23 October 2020
IMARGUMENT(Complexnumber)
- is of the form .
- IMARGUMENT(), returns the argument theta, an angle expressed in radians
Description
- This function gives the principal value of an argument of a complex-valued expression .
- i.e The angle from the positive axis to the line segment is called the Argument of a complex number.
- In this function angle value is in Radians.
- Here , Where Complexnumber in the form of . i.e & are the real numbers.
- imaginary unit ..
- An argument of the complex number is any real quantity such that = for some positive real number .
- Where and .
- The argument of a complex number is calculated by in Radians.
- To change the Radian value to Degree we can use DEGREES function or we can multiply the answer with .
- We can use COMPLEX function to convert real and imaginary number in to a complex number.
ZOS
- The syntax is to calculate argument of a complex number in ZOS is .
- is of the form .
- For e.g.,IMARGUMENT("6.72+1.5i")
Examples
- IMARGUMENT("3-2i") = -0.5880026035475675
- IMARGUMENT("5+6i") = 0.8760580505981934
- IMARGUMENT("2") = 0
- IMARGUMENT("4i") = 1.5707963267948966
- DEGREES(IMARGUMENT("2+2i")) = 45°
Related Videos
See Also
References