Difference between revisions of "Manuals/calci/IMARGUMENT"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font color="#000000"><font face="Arial, sans-serif"><font size="2">'''IMARGUMENT'''</font></font><font face="Arial, sa...")
 
 
(24 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"> <font color="#000000"><font face="Arial, sans-serif"><font size="2">'''IMARGUMENT'''</font></font><font face="Arial, sans-serif"><font size="2">(</font></font><font face="Arial, sans-serif"><font size="2">'''iN'''</font></font><font face="Arial, sans-serif"><font size="2">)</font></font></font>
+
<div style="font-size:30px">'''IMARGUMENT(Complexnumber)'''</div><br/>
 +
*<math>Complexnumber</math> is of the form <math>z=x+iy</math>.
 +
**IMARGUMENT(), returns the argument theta, an angle expressed in radians
  
<font color="#000000"><font face="Arial, sans-serif"><font size="2">Where 'iN' is a complex number.</font></font></font>
+
==Description==
 +
*This function gives the principal value of an argument of a complex-valued expression <math>z</math>. 
 +
* i.e The angle from the positive axis to the line segment is called the Argument of a complex number.
 +
*In this function angle value is in Radians.
 +
*Here <math>IMARGUMENT(Complexnumber)</math>, Where Complexnumber  in the form of <math>z=x+iy</math>. i.e  <math>x</math> & <math>y</math> are the real numbers.
 +
*<math>I</math> imaginary unit .<math>i=\sqrt{-1}</math>.
 +
*An argument of the complex number <math>z = x + iy</math> is any real quantity <math>\phi</math> such that <math>z = x + i y</math> = <math>r cos(\phi) + i r sin(\phi)</math> for some positive real number <math>r</math>.
 +
*Where <math>r = |z| = \sqrt{x^2+y^2}</math> and <math>\phi \in (-\pi,\pi]</math>.
 +
*The argument of a complex number is calculated by <math>arg(z)= tan^{-1}(\frac{y}{x}) =\theta</math> in Radians.
 +
*To change the Radian value to Degree we can use DEGREES function or we can multiply the answer with <math>\frac{180}{\pi}</math>.
 +
*We can use [[Manuals/calci/COMPLEX| COMPLEX]] function to convert real and imaginary number in to a complex number.
  
</div>
+
==ZOS==
----
+
*The syntax is to calculate argument of a complex number in ZOS is <math>IMARGUMENT(Complexnumber)</math>.
<div id="7SpaceContent" class="zcontent" align="left"> 
+
**<math>Complexnumber</math> is of the form <math>z=x+iy</math>.
 +
*For e.g.,IMARGUMENT("6.72+1.5i")
 +
{{#ev:youtube|oO4FgWYhIhw|280|center|Imargument}}
  
* <font color="#000000"><font face="Arial, sans-serif"><font size="2">The equation to find out IMARGUMENT is : </font></font></font>
+
==Examples==
  
<font color="#000000"></font>
+
#IMARGUMENT("3-2i") = -0.5880026035475675
 +
#IMARGUMENT("5+6i") = 0.8760580505981934
 +
#IMARGUMENT("2") = 0
 +
#IMARGUMENT("4i") = 1.5707963267948966
 +
#DEGREES(IMARGUMENT("2+2i")) = 45°
  
<font color="#000000"><font face="Arial, sans-serif"><font size="2">where:</font></font></font>
+
==Related Videos==
  
<font color="#000000"> <font face="Arial, sans-serif"><font size="2">and z = x + yi</font></font></font>
+
{{#ev:youtube|FwuPXchH2rA|280|center|Complex Number Analysis}}
  
</div>
+
==See Also==
----
+
*[[Manuals/calci/IMAGINARY  | IMAGINARY ]]
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
+
*[[Manuals/calci/IMREAL  | IMREAL]]
 +
*[[Manuals/calci/IMSUM  | IMSUM ]]
  
IMARGUMENT
+
==References==
 +
*[http://mathworld.wolfram.com/ComplexArgument.html Complex Argument]
  
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
  
<font color="#000000"><font face="Arial, sans-serif"><font size="2">Lets see an example,</font></font></font>
 
  
<font color="#000000"><font face="Arial, sans-serif"><font size="2">IMARGUMENT(iN)</font></font></font>
 
  
<font color="#000000"><font face="Arial, sans-serif"><font size="2"><nowiki>=IMARGUMENT("5+8i") is 1.012</nowiki></font></font></font>
+
*[[Z_API_Functions | List of Main Z Functions]]
  
</div>
+
*[[ Z3 Z3 home ]]
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="5SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#000000"><font face="Arial, sans-serif"><font size="2">This function returns the argument (theta), that is an angle which expressed in radians</font></font></font>
 
 
 
</div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE1" class="SpreadSheet blue"
 
|- class="even"
 
| class="   " |
 
<div id="1Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 1.0122
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f SelectTD SelectTD" |
 
<div id="1Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="1Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 

Latest revision as of 03:18, 23 October 2020

IMARGUMENT(Complexnumber)


  • is of the form .
    • IMARGUMENT(), returns the argument theta, an angle expressed in radians

Description

  • This function gives the principal value of an argument of a complex-valued expression .
  • i.e The angle from the positive axis to the line segment is called the Argument of a complex number.
  • In this function angle value is in Radians.
  • Here , Where Complexnumber in the form of . i.e & are the real numbers.
  • imaginary unit ..
  • An argument of the complex number is any real quantity such that = for some positive real number .
  • Where and .
  • The argument of a complex number is calculated by in Radians.
  • To change the Radian value to Degree we can use DEGREES function or we can multiply the answer with .
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

ZOS

  • The syntax is to calculate argument of a complex number in ZOS is .
    • is of the form .
  • For e.g.,IMARGUMENT("6.72+1.5i")
Imargument

Examples

  1. IMARGUMENT("3-2i") = -0.5880026035475675
  2. IMARGUMENT("5+6i") = 0.8760580505981934
  3. IMARGUMENT("2") = 0
  4. IMARGUMENT("4i") = 1.5707963267948966
  5. DEGREES(IMARGUMENT("2+2i")) = 45°

Related Videos

Complex Number Analysis

See Also

References