Difference between revisions of "Manuals/calci/IMDIV"
Jump to navigation
Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...") |
|||
(26 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''IMDIV()'''</div><br/> |
+ | *Parameters are any complex numbers of the form of a+ib. | ||
+ | **IMDIV(),returns the quotient of two complex numbers | ||
− | + | ==Description== | |
− | </ | + | *This function gives the division of two complex numbers. |
− | + | *This function used to remove the <math>i</math> (imaginary unit) from the denominator. | |
− | < | + | *The two Parameters are in the form of <math>a+ib</math> and <math>c+id</math>, where <math>a,b,c</math> & <math>d</math> are real numbers <math>i</math> is the imaginary unit, <math>i=\sqrt{-1}</math>. |
+ | *Let z1 and z2 are the two Complex Numbers. | ||
+ | *To do the division of complex number we have follow the steps: | ||
+ | step 1: Write the complex number in the fraction form. | ||
+ | step 2: Find the conjugate of the denominator. | ||
+ | step 3: Multiply the numerator and denominator with conjugate. | ||
+ | :<math>IMDIV(z1,z2) = \frac{a+ib}{c+id} = \frac{a+ib}{c+id}*\frac{c-id}{c-id} =\frac{ac+bd}{c^2+d^2}+\frac{(bc-ad)i}{(c^2+d^2)}</math>. | ||
+ | *To find the Conjugate of a Complex Number we can use the function [[Manuals/calci/IMCONJUGATE | IMCONJUGATE]]. | ||
− | + | ==ZOS== | |
+ | *The syntax is to calculate the IMDIV in ZOS is <math>IMDIV()</math>. | ||
+ | **Parameters are any complex numbers of the form of a+ib. | ||
+ | *For e.g.,IMDIV("3+2i","3-2i") | ||
− | + | {{#ev:youtube|2I89nee0Gmc|280|center|ImDiv}} | |
− | |||
− | |||
− | Examples | + | ==Examples== |
+ | #IMDIV("4+2i","3-i") =<math>\frac{4+2i}{3-i}*\frac{3+i}{3+i}</math> = <math>\frac{12+10i+2i^2}{3^2-i^2} = 10+\frac{10i}{10}</math> (because <math>i^2=-1</math>) = <math> 1+\frac{i}{1} = 1+1i </math> | ||
+ | #IMDIV("3-5i","2-6i") = 0.9+0.2i | ||
+ | #IMDIV("5","2+3i") = 0.7692307692307693 + -1.1538461538461537i | ||
+ | #IMDIV("1+i","2") = 0.5+0.5i | ||
− | + | ==Related Videos== | |
− | |||
− | |||
− | |||
− | |||
− | + | {{#ev:youtube|Z8j5RDOibV4|280|center|Dividing Complex Numbers}} | |
− | + | ==See Also== | |
− | + | *[[Manuals/calci/COMPLEX | COMPLEX ]] | |
− | + | *[[Manuals/calci/IMAGINARY | IMAGINARY ]] | |
+ | *[[Manuals/calci/IMREAL | IMREAL ]] | ||
− | |||
− | + | ==References== | |
− | + | [http://en.wikipedia.org/wiki/Complex_division Complex Division] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | *[[Z_API_Functions | List of Main Z Functions]] | |
− | |||
− | |||
− | + | *[[ Z3 | Z3 home ]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 15:34, 19 July 2018
IMDIV()
- Parameters are any complex numbers of the form of a+ib.
- IMDIV(),returns the quotient of two complex numbers
Description
- This function gives the division of two complex numbers.
- This function used to remove the (imaginary unit) from the denominator.
- The two Parameters are in the form of and , where & are real numbers is the imaginary unit, .
- Let z1 and z2 are the two Complex Numbers.
- To do the division of complex number we have follow the steps:
step 1: Write the complex number in the fraction form. step 2: Find the conjugate of the denominator. step 3: Multiply the numerator and denominator with conjugate.
- .
- To find the Conjugate of a Complex Number we can use the function IMCONJUGATE.
ZOS
- The syntax is to calculate the IMDIV in ZOS is .
- Parameters are any complex numbers of the form of a+ib.
- For e.g.,IMDIV("3+2i","3-2i")
Examples
- IMDIV("4+2i","3-i") = = (because ) =
- IMDIV("3-5i","2-6i") = 0.9+0.2i
- IMDIV("5","2+3i") = 0.7692307692307693 + -1.1538461538461537i
- IMDIV("1+i","2") = 0.5+0.5i
Related Videos
See Also
References