Difference between revisions of "Manuals/calci/IMEXP"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...")
 
 
(20 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify">
+
<div style="font-size:30px">'''IMEXP(ComplexNumber)'''</div><br/>
 +
*<math>ComplexNumber</math> is of the form x+iy.
 +
**IMEXP(), returns the exponential of a complex number.
  
Syntax
 
  
</div></div>
+
==Description==
----
 
<div id="4SpaceContent" align="left"><div class="ZEditBox" align="justify">
 
  
Remarks
+
*This function gives the exponential of a complex number.
 +
*In <math>IMEXP(ComplexNumber)</math>, <math>ComplexNumber</math> is  of the form  <math>x+iy</math>, <math>x</math>&<math>y</math> are real numbers & <math>i</math> is the imaginary unit. <math>i=\sqrt{-1}</math>.
 +
*Euler's formula states that <math>e^{ix}= cosx+isinx</math>, for any real number <math>x</math> and <math>e</math> is the base of the natural logarithm.
 +
*The approximate  value of the constant e=2.718281828459045 and it is equal to <math>e^1</math>.                                                 
 +
*Let z be the Complex Number.Then the exponential of a complex number is : <math>IMEXP(z) = e^z = e^{x+iy} = e^{x}.e^{iy} = e^{x}.(cosy+isiny)=e^x.cosy+ie^x.siny</math>.
 +
*Here Sin and Cos are trignometric functions. y is angle value in radians.
 +
*When  imaginary part is '0', it will give the exponent value of the real number. i.e <math>IMEXP(z) = EXP(z)</math> when imaginary number <math>iy</math> is '0'.
 +
*The Complex exponential function is denoted by "'''cis(x)'''"(Cosine plus iSine)
 +
*We can use [[Manuals/calci/COMPLEX  | COMPLEX ]] function to convert the real and imaginary coefficients to a complex number.
  
</div></div>
+
==ZOS==
----
 
<div id="2SpaceContent" align="left"><div class="ZEditBox" align="justify">
 
  
Examples
+
*The syntax is to calculate IMEXP in ZOS is <math>IMEXP(ComplexNumber)</math>.
 +
**<math>ComplexNumber</math> is of the form a+bi.
 +
*For e.g.,IMEXP("0.3-0.54i")
 +
{{#ev:youtube|nuPmQ8dB3wc|280|center|IMEXP}}
  
</div></div>
+
==Examples==
----
 
<div id="8SpaceContent" align="left"><div class="ZEditBox" align="justify">'''<font face="Times New Roman">''''''''''''<font size="6"> </font>''' '''''''''</font>'''</div></div>
 
----
 
<div id="11SpaceContent" align="left"><div class="ZEditBox mceEditable" align="justify">
 
  
<font size="5">Description</font>
+
#=IMEXP("2+3i") = -7.315110094901102+1.0427436562359i
 +
#=IMEXP("4-5i") = 15.4874305606508+52.355491418482i
 +
#=IMEXP("6") = 403.428793492735+0i
 +
#=IMEXP("2i") = -0.416146836547142+0.909297426825682i
 +
#=IMEXP("0") = 1+0i and IMEXP("0i") = 1+0i
  
</div></div>
+
==Related Videos==
----
 
<div id="5SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">This function calculates the exponential of a complex number in a+ bj or a+ bj text format.</font></font></font>
+
{{#ev:youtube|lNEoaXWkzvw|280|center|Exponential Form of Complex Number}}
  
</div></div>
+
==See Also==
----
+
*[[Manuals/calci/COMPLEX  | COMPLEX ]]
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"><font size="6">'''<font face="Arial">IMEXP</font>'''</font></div></div>
+
*[[Manuals/calci/IMAGINARY  | IMAGINARY ]]
----
+
*[[Manuals/calci/IMREAL  | IMREAL ]]
<div id="1SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
+
*[[Manuals/calci/EXP  | EXP ]]
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">The exponential of a complex number is: </font></font></font>
+
==References==
 +
[http://en.wikipedia.org/wiki/Exponential_function  Exponential function]
  
<font color="#484848">IMEXP(z)=e<sup>(x+yi)</sup> = e<sup>x</sup> e<sup>yi</sup> =e<sup>x</sup> (cos y + i sin y)</font>
 
  
</div></div>
 
----
 
<div id="6SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify"> 
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IMEXP'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''IN'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">)</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">where IN</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">  is the complex number.</font></font></font>
 
  
</div></div>
+
*[[Z_API_Functions | List of Main Z Functions]]
----
 
<div id="12SpaceContent" class="zcontent" align="left">
 
  
{| id="TABLE1" class="SpreadSheet blue"
+
*[[ Z3 |  Z3 home ]]
|- class="even"
 
| class=" " |
 
| Column1
 
| Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 3.9923240484412714+6.217676312367968i
 
| class="                sshl_f  " |
 
| class=" " |
 
| class=" " |
 
|- class="even"
 
| class="  " | Row2
 
| class="f52543                                                                        " |
 
| class="  SelectTD" |
 
<div id="12Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="12Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
| class=" " |
 
| class=" " |
 
|- class="odd"
 
| Row3
 
| class="  " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="even"
 
| Row4
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="odd"
 
| class=" " | Row5
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|- class="even"
 
| Row6
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
| class=" " |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Let's see an example</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2"><nowiki>=IMEXP(“2+i”) is3.992+6.2177i</nowiki></font></font></font>
 
 
 
</div>
 
----
 

Latest revision as of 15:36, 19 July 2018

IMEXP(ComplexNumber)


  • is of the form x+iy.
    • IMEXP(), returns the exponential of a complex number.


Description

  • This function gives the exponential of a complex number.
  • In , is of the form , & are real numbers & is the imaginary unit. .
  • Euler's formula states that , for any real number and is the base of the natural logarithm.
  • The approximate value of the constant e=2.718281828459045 and it is equal to .
  • Let z be the Complex Number.Then the exponential of a complex number is : .
  • Here Sin and Cos are trignometric functions. y is angle value in radians.
  • When imaginary part is '0', it will give the exponent value of the real number. i.e when imaginary number is '0'.
  • The Complex exponential function is denoted by "cis(x)"(Cosine plus iSine)
  • We can use COMPLEX function to convert the real and imaginary coefficients to a complex number.

ZOS

  • The syntax is to calculate IMEXP in ZOS is .
    • is of the form a+bi.
  • For e.g.,IMEXP("0.3-0.54i")
IMEXP

Examples

  1. =IMEXP("2+3i") = -7.315110094901102+1.0427436562359i
  2. =IMEXP("4-5i") = 15.4874305606508+52.355491418482i
  3. =IMEXP("6") = 403.428793492735+0i
  4. =IMEXP("2i") = -0.416146836547142+0.909297426825682i
  5. =IMEXP("0") = 1+0i and IMEXP("0i") = 1+0i

Related Videos

Exponential Form of Complex Number

See Also

References

Exponential function