Difference between revisions of "Manuals/calci/IMPOWER"
Jump to navigation
Jump to search
(Created page with "<div id="16SpaceContent" align="left"><div class="ZEditBox" align="justify"> Syntax </div></div> ---- <div id="4SpaceContent" align="left"><div class="ZEditBox" align=...") |
(→ZOS) |
||
(23 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''IMPOWER(Complexnumber,n)'''</div><br/> |
+ | *<math>Complexnumber</math> is of the form <math>z=x+iy</math> | ||
+ | *<math>n</math> is the power value. | ||
+ | **IMPOWER(), returns a complex number raised to an integer power. | ||
− | + | ==Description== | |
+ | *This function gives the value of powers of complex number. | ||
+ | *DeMoivre's Theorem is a generalized formula to compute powers of a complex number in it's polar form. | ||
+ | *<math>i</math> is the imaginary unit, <math>i=\sqrt{-1}</math> | ||
+ | *Then the power of a complex number is defined by | ||
+ | :<math>(z)^n=(x+iy)^n=r^n*e^{in\theta}=r^n(cosn\theta+isinn\theta)</math> | ||
+ | where <math>r=\sqrt{x^2+y^2}</math> and <math>\theta=tan^{-1}(\frac{y}{x})</math>, <math>\theta \isin (-\pi,\pi]</math>. | ||
+ | *This formula is called DeMoivre's theorem of complex numbers. | ||
+ | *We can use [[Manuals/calci/COMPLEX| COMPLEX]] function to convert real and imaginary number in to a complex number. | ||
+ | *In IMPOWER(Complexnumber,n), <math>n</math> can be integer, fractional or negative. | ||
+ | *If <math>n</math> is non-numeric, function will return error value. | ||
− | </ | + | ==ZOS== |
− | + | *The syntax is to calculate powers of Complex number in ZOS is <math>IMPOWER(Complexnumber,n)</math>. | |
− | < | + | **<math>Complexnumber</math> is of the form <math>z=x+iy</math> |
+ | **<math>n</math> is the power value. | ||
+ | *For e.g.,IMPOWER("7-8i",6) | ||
+ | {{#ev:youtube|QRkmmsadQhA|280|center|Impower}} | ||
− | + | ==Examples== | |
− | + | #=IMPOWER("4+5i",3) = -235.99999+115i | |
− | --- | + | #=IMPOWER("9-7i",4) = -14852-8063.999999i |
− | + | #=IMPOWER("6",9) = 10077696+0i | |
+ | #=IMPOWER("i",10) = -1+0i | ||
− | + | ==Related Videos== | |
− | + | {{#ev:youtube|dl_9NC_J6yo|280|center|IMPOWER}} | |
− | |||
− | |||
− | |||
− | |||
− | + | ==See Also== | |
− | + | *[[Manuals/calci/IMREAL | IMREAL ]] | |
− | + | *[[Manuals/calci/IMSUM | IMSUM ]] | |
− | + | *[[Manuals/calci/IMAGINARY | IMAGINARY ]] | |
+ | *[[Manuals/calci/COMPLEX | COMPLEX ]] | ||
− | + | ==References== | |
+ | [http://en.wikipedia.org/wiki/De_Moivre's_formula De Moivre's formula] | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | *[[Z_API_Functions | List of Main Z Functions]] | |
− | + | *[[ Z3 | Z3 home ]] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− |
Latest revision as of 04:02, 2 November 2020
IMPOWER(Complexnumber,n)
- is of the form
- is the power value.
- IMPOWER(), returns a complex number raised to an integer power.
Description
- This function gives the value of powers of complex number.
- DeMoivre's Theorem is a generalized formula to compute powers of a complex number in it's polar form.
- is the imaginary unit,
- Then the power of a complex number is defined by
where and , .
- This formula is called DeMoivre's theorem of complex numbers.
- We can use COMPLEX function to convert real and imaginary number in to a complex number.
- In IMPOWER(Complexnumber,n), can be integer, fractional or negative.
- If is non-numeric, function will return error value.
ZOS
- The syntax is to calculate powers of Complex number in ZOS is .
- is of the form
- is the power value.
- For e.g.,IMPOWER("7-8i",6)
Examples
- =IMPOWER("4+5i",3) = -235.99999+115i
- =IMPOWER("9-7i",4) = -14852-8063.999999i
- =IMPOWER("6",9) = 10077696+0i
- =IMPOWER("i",10) = -1+0i
Related Videos
See Also
References