Difference between revisions of "Manuals/calci/LINEST"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''LINEST'''('''Y''',X,C,stats)'''Where Y '''is the set of y-values and X  is an optional set of x-values that in th...")
 
 
(13 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''LINEST (YRange,XRanges,Constant,Stats)'''</div><br/>
 +
where,
 +
*<math>YRange</math> is a set of Y  values,
 +
*<math>XRanges</math> is an optional set of X  values,
 +
*<math>Constant</math> is a logical value TRUE or FALSE, that decides whether to force the constant 'b' to 0,
 +
*<math>Stats</math> is a logical value TRUE or FALSE, that decides whether to return additional regression statistics.
 +
**LINEST(), returns the parameters of a linear trend.
  
'''LINEST'''('''Y''',X,C,stats)'''Where Y '''is the set of y-values and X  is an optional set of x-values that in the relationship y = mx + b.
+
== Description ==
 +
*This function is an array function that calculates the statistics for a line by using the 'least squares' method to calculate a straight line that closely fits the input data.
  
''''''  is a logical value specifying whether to force the constant b to equal 0 and stats  are a logical value specifying whether to return additional regression statistics.
+
*If 'Y' is the point on y-axis, 'X' is the point on x-axis, 'm' is a constant indicating slope of the line and 'b' is the constant value at which the line crosses y-axis (Y intercept),
 +
then equation of line is -
  
</div>
+
<math>Y=mX + b</math>
----
 
<div id="1SpaceContent" class="zcontent" align="left">
 
  
This function calculates the k-th largest value in a data set.
+
*For multiple ranges of X-values,
  
</div>
+
<math>Y = m1X1 + m2X2 +......+ b</math>
----
 
<div id="7SpaceContent" class="zcontent" align="left">·    <font face="Arial">When </font>there is  only one independent x-variable, then the slope and y-intercept values directly by using the following formulas:
 
  
Slope:<br />=INDEX(LINEST(Y,X),1)
+
*Argument values <math>XRanges</math> and <math>YRange</math> should be numeric, else Calci displays NaN error message.
 +
*The length of array of X values should be equal to length of array of Y values, else Calci displays #NULL error message.
 +
*<math>Constant</math> is  a logical value that decides whether to make constant 'b' equal to 0.
 +
*If <math>Constant</math> = TRUE or omitted, 'b' is calculated normally. If <math>Constant</math> = FALSE, 'b' is made equal to 0.
 +
*<math>Stats</math> is a logical value that decides whether to display additional regression statistics.
 +
*If <math>Stats</math> = TRUE, calci returns additional regression statistics. If <math>,Stats</math> = FALSE or omitted, Calci returns the values of 'm'(slope) and the constant 'b'.
 +
*When there is only one independent X variable, Slope(m) and Y intercept (b) can be calculated using following formulas -
  
Y-intercept:<br />=INDEX(LINEST(Y,X) 2)
+
<math>Slope (m) = INDEX(LINEST(Y, X),1) </math>
  
·          The accuracy of the line is calculated by using LINEST.
+
<math>Y intercept (b) = INDEX(LINEST(Y, X),2) </math>
 +
*The additional regression is displayed in the following format where each statistic value is described as below-
  
Formulas:-
+
{| class="wikitable"
 +
|-
 +
| <math>m_n</math> || <math>m_{n-1}</math> || --- || <math>m_1</math> || <math>b</math>
 +
|-
 +
| <math>se_n</math> || <math>se_{n-1}</math> || --- || <math>se_1</math> || <math>se_b</math>
 +
|-
 +
| <math>r_2</math> || <math>se_y</math> ||  || ||
 +
|-
 +
| <math>F</math> || <math>d_f</math> ||  ||  || 
 +
|-
 +
| <math>ss_{reg}</math> || <math>ss_{resld}</math> || ||  || 
 +
|}
  
</div>
+
*<math>m_n</math> is an array of constant multipliers for straight line equation
----
+
*<math>b</math> is the constant value of Y when X=0
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
+
*<math>se_1</math> is the standard error value for m1
 +
*<math>se_b</math> is the standard error value for constant b
 +
*<math>r_2</math> is the coefficient of determination
 +
*<math>se_y</math> is the standard error value for Y estimate
 +
*<math>F</math> is the observed F value
 +
*<math>d_f</math> is the number of degrees of freedom
 +
*<math>ss_{reg}</math> is the regression sum of squares
 +
*<math>ss_{resld}</math> is the residual sum of squares
  
LINEST
+
== Examples ==
  
</div></div>
+
<div id="2SpaceContent" class="zcontent" align="left">
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
  
Lets see an example,
+
{| id="TABLE3" class="SpreadSheet blue"
 +
|- class="even"
 +
| class="sshl_f" | '''Y co-ordinates'''
 +
| class="sshl_f" | '''X co-ordinates'''
 +
| class="sshl_f" |
  
LINEST(Y,X,C,Stats)
+
|- class="odd"
 +
| class="sshl_f" | 1
 +
| class="sshl_f" | 2
 +
| class="sshl_f" |
  
B             C
+
|- class="even"
 +
| class="sshl_f" | 5
 +
| class="sshl_f" | 4
 +
| class="sshl_f" |
  
1             0
+
|- class="odd"
 +
| class="sshl_f" | 4
 +
| class="sshl_f" | 6
 +
| class="sshl_f" |
  
9             4
+
|- class="even"
 +
| class="sshl_f" | 3
 +
| class="sshl_f" | 8
 +
| class="sshl_f" |
  
5             2
+
|- class="odd"
 +
| class="sshl_f" | 2
 +
| class="sshl_f" | 10
 +
| class="sshl_f" |
  
7             3
+
|}
 
 
<nowiki>=LINEST(B2:B5,C2:C5,FALSE)</nowiki>
 
  
<nowiki>=LARGE(B2:C6,8) is 5</nowiki>
+
=LINEST(A2:A6,B2:B6,TRUE,FALSE) : Calculates the statistics of line with Y co-ordinates in cells <br /> A2 to A6 and X co-ordinates in cells B2 to B6. Returns '''m=0''' and '''b=3''' as a result.
 +
=LINEST(A2:A6,B2:B6,FALSE,FALSE): Calculates the statistics of line with Y co-ordinates in cells <br /> A2 to A6 and X co-ordinates in cells range B2 to B6. Returns '''m=0.4090909090909091''' and '''b=0''' as a result.
 +
 +
=LINEST(A2:A6,B2:B6,FALSE,TRUE) : Displays the additional regression statistics of line <br />with Y co-ordinates in cells A2 to A6 and X co-ordinates in cells B2 to B6 as shown below:
  
</div>
+
<div id="5SpaceContent" class="zcontent" align="left">
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
  
{| id="TABLE3" class="SpreadSheet blue"
+
{| class="SpreadSheet blue"
|- class="even"
 
| class="    " |
 
| Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f " | 1
 
| class="sshl_f " | 0
 
| class="sshl_f" |
 
| class="sshl_f" |
 
 
|- class="even"
 
|- class="even"
| class="  " | Row2
+
| 0.40909090909090906
| class="sshl_f" | 9
+
| 0
| class="sshl_f" | 4
 
| class="SelectTD" |
 
| class="sshl_f" |
 
 
|- class="odd"
 
|- class="odd"
| Row3
+
| 0.14373989364401724
| class="sshl_f" | 5
+
|  
| class="sshl_f" | 2
 
| class="  " |
 
| class="sshl_f" |
 
 
|- class="even"
 
|- class="even"
| Row4
+
| 0.6694214876033057
| class=" " | 7
+
| 2.1320071635561044
| class=" " | 3
 
| class="sshl_f" |
 
| class="sshl_f" |
 
 
|- class="odd"
 
|- class="odd"
| class=" " | Row5
+
| 8.099999999999998
| class="sshl_f" |
+
| 4
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
 
|- class="even"
 
|- class="even"
| Row6
+
| 36.81818181818181
|
+
| 18.181818181818183
| class="sshl_f  " |
+
 
| class="sshl_f" |
 
| class="sshl_f" |
 
 
|}
 
|}
  
<div align="left">[[Image:calci1.gif]]</div></div>
+
==Related Videos==
----
+
 
 +
{{#ev:youtube|6wbcPbYbq6M|280|center|LINEST}}
 +
 
 +
== See Also ==
 +
 
 +
*[[Manuals/calci/LOGEST| LOGEST]]
 +
 
 +
== References ==
 +
*[http://en.wikipedia.org/wiki/Linear_equation Linear Equation]
 +
 
 +
 
 +
 
 +
 
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 16:13, 10 August 2018

LINEST (YRange,XRanges,Constant,Stats)


where,

  • is a set of Y values,
  • is an optional set of X values,
  • is a logical value TRUE or FALSE, that decides whether to force the constant 'b' to 0,
  • is a logical value TRUE or FALSE, that decides whether to return additional regression statistics.
    • LINEST(), returns the parameters of a linear trend.

Description

  • This function is an array function that calculates the statistics for a line by using the 'least squares' method to calculate a straight line that closely fits the input data.
  • If 'Y' is the point on y-axis, 'X' is the point on x-axis, 'm' is a constant indicating slope of the line and 'b' is the constant value at which the line crosses y-axis (Y intercept),

then equation of line is -


  • For multiple ranges of X-values,

  • Argument values and should be numeric, else Calci displays NaN error message.
  • The length of array of X values should be equal to length of array of Y values, else Calci displays #NULL error message.
  • is a logical value that decides whether to make constant 'b' equal to 0.
  • If = TRUE or omitted, 'b' is calculated normally. If = FALSE, 'b' is made equal to 0.
  • is a logical value that decides whether to display additional regression statistics.
  • If = TRUE, calci returns additional regression statistics. If = FALSE or omitted, Calci returns the values of 'm'(slope) and the constant 'b'.
  • When there is only one independent X variable, Slope(m) and Y intercept (b) can be calculated using following formulas -


  • The additional regression is displayed in the following format where each statistic value is described as below-
---
---
  • is an array of constant multipliers for straight line equation
  • is the constant value of Y when X=0
  • is the standard error value for m1
  • is the standard error value for constant b
  • is the coefficient of determination
  • is the standard error value for Y estimate
  • is the observed F value
  • is the number of degrees of freedom
  • is the regression sum of squares
  • is the residual sum of squares

Examples

Y co-ordinates X co-ordinates
1 2
5 4
4 6
3 8
2 10
=LINEST(A2:A6,B2:B6,TRUE,FALSE) : Calculates the statistics of line with Y co-ordinates in cells 
A2 to A6 and X co-ordinates in cells B2 to B6. Returns m=0 and b=3 as a result. =LINEST(A2:A6,B2:B6,FALSE,FALSE): Calculates the statistics of line with Y co-ordinates in cells
A2 to A6 and X co-ordinates in cells range B2 to B6. Returns m=0.4090909090909091 and b=0 as a result. =LINEST(A2:A6,B2:B6,FALSE,TRUE) : Displays the additional regression statistics of line
with Y co-ordinates in cells A2 to A6 and X co-ordinates in cells B2 to B6 as shown below:
0.40909090909090906 0
0.14373989364401724
0.6694214876033057 2.1320071635561044
8.099999999999998 4
36.81818181818181 18.181818181818183

Related Videos

LINEST

See Also

References