Difference between revisions of "Manuals/calci/MINVERSE"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''MINVERSE'''(Array) where, '''Array''' -  represents array having equal number of rows and columns. </di...")
 
 
(17 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">
+
<div style="font-size:30px">'''MINVERSE(a)'''</div><br/>
 +
*<math>a</math> is the  array of numeric elements.
 +
**MINVERSE(), returns the matrix inverse of an array.
  
'''MINVERSE'''(Array)
+
==Description==
 +
*This function gives the inverse matrix for the given matrix.
 +
*We have to find a inverse of a matrix then it should satisfy the following conditions
 +
*1.A matrix must be a square matrix.
 +
*2.It's determinant not equal to 0.
 +
*Let <math>A</math> be the 2x2 matrix with the elements
 +
<math>A=\begin{bmatrix}
 +
a & b \\
 +
c & d \\
 +
\end{bmatrix}</math>.
 +
*Then the inverse of matrix <math>A</math> is denoted by <math>A^{-1}</math>.
 +
:<math>A^{-1}=\begin{bmatrix}
 +
a & b \\
 +
c & d \\
 +
\end{bmatrix}^{-1}= \frac{1}{ad-bc} *  \begin{bmatrix}
 +
d & -b \\
 +
-c & a \\
 +
\end{bmatrix}
 +
</math>
 +
*Now let <math>A</math> be the matrix is of order <math>nXn</math>.
 +
*Then the inverse of <math>A</math> is <math>A^{-1}= \frac{1}{det(A)}*adj(A)</math>
 +
*Where <math>adj(A)</math> is the adjoint of <math>A</math>.
 +
*Adjoint is the matrix formed by taking the Transpose of the Co-factor matrix of the original matrix.
 +
*Also <math>A.A^{-1}=A^{-1}.A = I</math>, where <math>I</math> is the identity matrix.
 +
*Non-square matrices do not have inverses.
 +
*Not all square matrices have inverses.
 +
*A square matrix which has an inverse is called invertible or non-singular, and a square matrix without an inverse is called non-invertible or singular.
 +
*This function will return the result as error when
 +
1. Any one of the cell is non-numeric or any cell is empty or contain text
 +
2. Suppose number of rows not equal to number of columns
  
where,
+
==ZOS==
 +
*The syntax is to calculate the inverse of the matrix in ZOS is <math>MINVERSE(a)</math>.
 +
**<math>a</math> is the  array of numeric elements.
 +
*For e.g.,minverse([[10,12],[11,14]])
  
'''Array''' -  represents array having equal number of rows and columns.
+
== Examples ==
 +
<math>Matrix A=
 +
\begin{bmatrix}
 +
4 & 3 \\
 +
3 & 2 \\
 +
\end{bmatrix}
 +
</math>
 +
<math>
 +
MINVERSE(B5:C6)=
 +
\begin{bmatrix}
 +
-2 & 3 \\
 +
3 & -4 \\
 +
\end{bmatrix}
 +
</math>
  
</div>
+
<math>Matrix A=
----
+
\begin{bmatrix}
<div id="1SpaceContent" class="zcontent" align="left">
+
3 & 4 \\
 +
6 & 8 \\
 +
\end{bmatrix}
 +
</math>
 +
<math>MINVERSE(C4:D5)=Null</math>, because its determinant value is 0.
  
It returns the inverse matrix having equal number of rows and columns based on given array.
+
<math>Matrix A=
 +
\begin{bmatrix}
 +
2 & 3 \\
 +
4 & 7 \\
 +
\end{bmatrix}
 +
</math>
 +
<math>MINVERSE(B4:C5)=
 +
\begin{bmatrix}
 +
3.5 & -1.5 \\
 +
-2 & 1 \\
 +
\end{bmatrix}
 +
</math>
  
</div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
  
If Array have different number of rows and column, MINVERSE returns the #ERROR.
+
==Related Videos==
  
</div>
+
{{#ev:youtube|01c12NaUQDw|280|center|Inverse of Matrix}}
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
  
MINVERSE
+
==See Also==
  
</div></div>
+
*[[Manuals/calci/MMULT | MMULT ]]
----
+
*[[Manuals/calci/MDETERM | MDETERM ]]
<div id="8SpaceContent" class="zcontent" align="left">
 
  
Lets see an example in (Column2, Row5)
+
==References==
  
<nowiki>=MINVERSE(R1C1:R2C2)</nowiki>
+
*[http://en.wikipedia.org/wiki/Invertible_matrix Matrix Inverse]
  
MINVERSE returns array[-1.5,1.25,0.5,-0.25].
 
  
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
  
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| class="  " | Column1
 
| Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="                                                  " | 1
 
| class=" " | 5
 
|
 
|
 
|- class="even"
 
| class="  " | Row2
 
| class=" " | 2
 
| class=" " | 6
 
|
 
|
 
|- class="odd"
 
| Row3
 
| class="sshl_f" | -1.5,1.25,0.5,-0.25
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
| class=" SelectTD ChangeBGColor SelectTD" |
 
|
 
|
 
|
 
|- class="odd"
 
| class=" " | Row5
 
|
 
|
 
|
 
|
 
|- class="even"
 
| Row6
 
|
 
| class="  " |
 
|
 
|
 
|}
 
  
<div align="left">[[Image:calci1.gif]]</div></div>
+
*[[Z_API_Functions | List of Main Z Functions]]
----
+
 
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 16:02, 24 July 2018

MINVERSE(a)


  • is the array of numeric elements.
    • MINVERSE(), returns the matrix inverse of an array.

Description

  • This function gives the inverse matrix for the given matrix.
  • We have to find a inverse of a matrix then it should satisfy the following conditions
  • 1.A matrix must be a square matrix.
  • 2.It's determinant not equal to 0.
  • Let be the 2x2 matrix with the elements

.

  • Then the inverse of matrix is denoted by .
  • Now let be the matrix is of order .
  • Then the inverse of is
  • Where is the adjoint of .
  • Adjoint is the matrix formed by taking the Transpose of the Co-factor matrix of the original matrix.
  • Also , where is the identity matrix.
  • Non-square matrices do not have inverses.
  • Not all square matrices have inverses.
  • A square matrix which has an inverse is called invertible or non-singular, and a square matrix without an inverse is called non-invertible or singular.
  • This function will return the result as error when
1. Any one of the cell is non-numeric or any cell is empty or contain text
2. Suppose number of rows not equal to number of columns

ZOS

  • The syntax is to calculate the inverse of the matrix in ZOS is .
    • is the array of numeric elements.
  • For e.g.,minverse([[10,12],[11,14]])

Examples

, because its determinant value is 0.


Related Videos

Inverse of Matrix

See Also

References