Difference between revisions of "Manuals/calci/MINVERSE"
Jump to navigation
Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> '''MINVERSE'''(Array) where, '''Array''' - represents array having equal number of rows and columns. </di...") |
|||
(17 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <div | + | <div style="font-size:30px">'''MINVERSE(a)'''</div><br/> |
+ | *<math>a</math> is the array of numeric elements. | ||
+ | **MINVERSE(), returns the matrix inverse of an array. | ||
− | ' | + | ==Description== |
+ | *This function gives the inverse matrix for the given matrix. | ||
+ | *We have to find a inverse of a matrix then it should satisfy the following conditions | ||
+ | *1.A matrix must be a square matrix. | ||
+ | *2.It's determinant not equal to 0. | ||
+ | *Let <math>A</math> be the 2x2 matrix with the elements | ||
+ | <math>A=\begin{bmatrix} | ||
+ | a & b \\ | ||
+ | c & d \\ | ||
+ | \end{bmatrix}</math>. | ||
+ | *Then the inverse of matrix <math>A</math> is denoted by <math>A^{-1}</math>. | ||
+ | :<math>A^{-1}=\begin{bmatrix} | ||
+ | a & b \\ | ||
+ | c & d \\ | ||
+ | \end{bmatrix}^{-1}= \frac{1}{ad-bc} * \begin{bmatrix} | ||
+ | d & -b \\ | ||
+ | -c & a \\ | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
+ | *Now let <math>A</math> be the matrix is of order <math>nXn</math>. | ||
+ | *Then the inverse of <math>A</math> is <math>A^{-1}= \frac{1}{det(A)}*adj(A)</math> | ||
+ | *Where <math>adj(A)</math> is the adjoint of <math>A</math>. | ||
+ | *Adjoint is the matrix formed by taking the Transpose of the Co-factor matrix of the original matrix. | ||
+ | *Also <math>A.A^{-1}=A^{-1}.A = I</math>, where <math>I</math> is the identity matrix. | ||
+ | *Non-square matrices do not have inverses. | ||
+ | *Not all square matrices have inverses. | ||
+ | *A square matrix which has an inverse is called invertible or non-singular, and a square matrix without an inverse is called non-invertible or singular. | ||
+ | *This function will return the result as error when | ||
+ | 1. Any one of the cell is non-numeric or any cell is empty or contain text | ||
+ | 2. Suppose number of rows not equal to number of columns | ||
− | + | ==ZOS== | |
+ | *The syntax is to calculate the inverse of the matrix in ZOS is <math>MINVERSE(a)</math>. | ||
+ | **<math>a</math> is the array of numeric elements. | ||
+ | *For e.g.,minverse([[10,12],[11,14]]) | ||
− | + | == Examples == | |
+ | <math>Matrix A= | ||
+ | \begin{bmatrix} | ||
+ | 4 & 3 \\ | ||
+ | 3 & 2 \\ | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
+ | <math> | ||
+ | MINVERSE(B5:C6)= | ||
+ | \begin{bmatrix} | ||
+ | -2 & 3 \\ | ||
+ | 3 & -4 \\ | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
− | </ | + | <math>Matrix A= |
− | + | \begin{bmatrix} | |
− | < | + | 3 & 4 \\ |
+ | 6 & 8 \\ | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
+ | <math>MINVERSE(C4:D5)=Null</math>, because its determinant value is 0. | ||
− | + | <math>Matrix A= | |
+ | \begin{bmatrix} | ||
+ | 2 & 3 \\ | ||
+ | 4 & 7 \\ | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
+ | <math>MINVERSE(B4:C5)= | ||
+ | \begin{bmatrix} | ||
+ | 3.5 & -1.5 \\ | ||
+ | -2 & 1 \\ | ||
+ | \end{bmatrix} | ||
+ | </math> | ||
− | |||
− | |||
− | |||
− | + | ==Related Videos== | |
− | + | {{#ev:youtube|01c12NaUQDw|280|center|Inverse of Matrix}} | |
− | |||
− | |||
− | + | ==See Also== | |
− | + | *[[Manuals/calci/MMULT | MMULT ]] | |
− | + | *[[Manuals/calci/MDETERM | MDETERM ]] | |
− | |||
− | + | ==References== | |
− | + | *[http://en.wikipedia.org/wiki/Invertible_matrix Matrix Inverse] | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | *[[Z_API_Functions | List of Main Z Functions]] | |
− | + | ||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 16:02, 24 July 2018
MINVERSE(a)
- is the array of numeric elements.
- MINVERSE(), returns the matrix inverse of an array.
Description
- This function gives the inverse matrix for the given matrix.
- We have to find a inverse of a matrix then it should satisfy the following conditions
- 1.A matrix must be a square matrix.
- 2.It's determinant not equal to 0.
- Let be the 2x2 matrix with the elements
.
- Then the inverse of matrix is denoted by .
- Now let be the matrix is of order .
- Then the inverse of is
- Where is the adjoint of .
- Adjoint is the matrix formed by taking the Transpose of the Co-factor matrix of the original matrix.
- Also , where is the identity matrix.
- Non-square matrices do not have inverses.
- Not all square matrices have inverses.
- A square matrix which has an inverse is called invertible or non-singular, and a square matrix without an inverse is called non-invertible or singular.
- This function will return the result as error when
1. Any one of the cell is non-numeric or any cell is empty or contain text 2. Suppose number of rows not equal to number of columns
ZOS
- The syntax is to calculate the inverse of the matrix in ZOS is .
- is the array of numeric elements.
- For e.g.,minverse([[10,12],[11,14]])
Examples
, because its determinant value is 0.
Related Videos
See Also
References