Difference between revisions of "Manuals/calci/SKEW"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left"> <font face="Arial, sans-serif"><font size="2">'''SKEW'''</font></font><font face="Arial, sans-serif"><font size="2">(</...")
 
 
(20 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"> <font face="Arial, sans-serif"><font size="2">'''SKEW'''</font></font><font face="Arial, sans-serif"><font size="2">(</font></font><font face="Arial, sans-serif"><font size="2">'''n1'''</font></font><font face="Arial, sans-serif"><font size="2">,n2,...)</font></font>
+
<div style="font-size:30px">'''SKEW()'''</div><br/>
 +
*Parameters are any numbers to calculate the skewness.
 +
**SKEW() returns the skewness of a distribution
  
<font face="Arial, sans-serif"><font size="2">'''Where n1, n2 ...'''</font></font><font face="Arial, sans-serif"><font size="2">   are numbers to calculate the skewness. </font></font>
+
==Description==
 +
*This function gives the Skewness of a distribution.
 +
*Skewness is a measure of the degree of asymmetry of a distribution.
 +
*A distribution(normal distribution) is symmetry ,it don't have a Skewness.
 +
*In a  distribution  the left tail  is more pronounced than the right tail (towards more negative values) then the function is said to have Negative Skewness.
 +
*If a distribution is skewed to the right, the tail on the curve's right-hand side is longer than the tail on the left-hand side (towards more positive values), then the function is said to have a positive skewness.  
 +
*In a Left Skewed Distribution, its <math>mean<median<mode</math>
 +
*In a Normal Skewed Distribution, its <math>mean=median=mode</math>
 +
*In a Right Skewed Distribution, its <math>mode<median<mean</math>.
 +
*In <math>SKEW(), First parameter is required.From the second parameter are optional.
 +
*In calci there is no restriction for giving the number of arguments.
 +
*The arguments can be be either numbers or names, array,constants or references that contain numbers.
 +
*Suppose the array contains text,logicl values or empty cells, like that values are not considered.  
 +
*The equation for Skewness is defined by :<math> Skewness = \frac{n}{(n-1)(n-2)}\sum \left(\frac{x_i-\bar{x}}{s} \right)^3</math>
 +
Where, <math>s</math> is the sample standard deviation, <math>\bar{x}</math> represents a sample mean.
 +
*This function will return the result as error when
 +
  1. Any one of the argument is non-numeric.
 +
  2. If there are fewer than three data points, or the Sample Standard Deviation is zero.
  
</div>
+
==Examples==
----
+
{| class="wikitable"
<div id="1SpaceContent" class="zcontent" align="left">  <font face="Arial, sans-serif"><font size="2">It calculates the skewness of a distribution. </font></font></div>
+
|+Spreadsheet
----
+
|-
<div id="7SpaceContent" class="zcontent" align="left"> 
+
! !! A !! B !! C !! D!! E
 
+
|-
# <font face="Arial, sans-serif"><font size="2">If the data points are less than three,the function displays NaN.</font></font>
+
! 1
# <font face="Arial, sans-serif"><font size="2">The equation for skewness is: </font></font>
+
| 0 || 4 || -5 ||4 || 1
 
+
|-
<br /><br />
+
! 2
 
+
| 29 || 9 || 11 || 5 || 2
</div>
+
|-
----
+
! 3
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
+
| 41  || 11  || 18  ||2 || 3
 
+
|-
SKEW
+
! 4
 
+
| 18 ||10  || 7  ||5 ||5
</div></div>
+
|-
----
+
! 5
<div id="8SpaceContent" class="zcontent" align="left"> 
+
| 4 || 5 || 9  ||6 || 6
 
+
|-
<font face="Arial, sans-serif"><font size="2">C1R1=13</font></font>
+
! 6
 
+
| 38 || 9 || 13  || 8 || 11
<font face="Arial">C2R2=14</font>
+
|}
 
 
<font face="Arial">C3R3=15</font>
 
 
 
<font face="Arial">C4R4=12</font>
 
  
<font face="Arial">C5R5=13</font>
+
*=SKEW(B1:B5) = -0.4369344921493
 +
*=SKEW(A1:A6) = -0.21921252920
 +
*=SKEW(C1:C4) = -0.715957010
 +
*=SKEW(D1:D6) = 0
 +
*=SKEW(E1:E6) = 1.16584702768
  
<font face="Arial">C6R6=14</font>
+
==Related Videos==
  
<font face="Arial">C7R7=9</font>
+
{{#ev:youtube|B0xF7UILeKo|280|center|SKEW}}
  
<font face="Arial">C8R8=16</font>
+
==See Also==
 +
*[[Manuals/calci/KURT| KURT]]
 +
*[[Manuals/calci/STDEV  | STDEV ]]
 +
*[[Manuals/calci/STDEVP | STDEVP ]]
  
<font face="Arial">C9R9=14</font>
+
==References==
 +
*[http://en.wikipedia.org/wiki/Skewness Skewness]
  
<font face="Arial">C10R10=17</font>
 
  
<font face="Arial, sans-serif"><font size="2">i.e.SKEW(Column1Row1:Column1Row10)</font></font>
 
  
<font face="Arial, sans-serif"><font size="2">i.e.= SKEW(C1R1:C1R10) is -0.756</font></font>
 
  
</div>
+
*[[Z_API_Functions | List of Main Z Functions]]
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class=" " |
 
| class="  " | Column1
 
| class="    " | Column2
 
| Column3
 
| Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f " | 13
 
| class="sshl_f" | -0.756
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 14
 
| class=" SelectTD SelectTD" |
 
<div id="2Space_Handle" title="Click and Drag to resize CALCI Column/Row/Cell. It is EZ!"></div><div id="2Space_Copy" title="Click and Drag over to AutoFill other cells."></div>
 
|
 
|
 
|- class="odd"
 
| Row3
 
| class="sshl_f" | 15
 
|
 
|
 
|
 
|- class="even"
 
| Row4
 
| class="sshl_f" | 12
 
|
 
|
 
| class="  " |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" | 13
 
|
 
|
 
|
 
|- class="even"
 
| class="sshl_f" | Row6
 
| class="sshl_f" | 14
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class="sshl_f  " | Row7
 
| class="sshl_f" | 9
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="sshl_f" | Row8
 
| class="sshl_f" | 16
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class="sshl_f" | Row9
 
| class="sshl_f" | 14
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="sshl_f" | Row10
 
| class="sshl_f " | 17
 
|
 
|
 
|
 
|}
 
  
<div align="left">[[Image:calci1.gif]]</div></div>
+
*[[ Z3 |  Z3 home ]]
----
 

Latest revision as of 13:40, 18 June 2018

SKEW()


  • Parameters are any numbers to calculate the skewness.
    • SKEW() returns the skewness of a distribution

Description

  • This function gives the Skewness of a distribution.
  • Skewness is a measure of the degree of asymmetry of a distribution.
  • A distribution(normal distribution) is symmetry ,it don't have a Skewness.
  • In a distribution the left tail is more pronounced than the right tail (towards more negative values) then the function is said to have Negative Skewness.
  • If a distribution is skewed to the right, the tail on the curve's right-hand side is longer than the tail on the left-hand side (towards more positive values), then the function is said to have a positive skewness.
  • In a Left Skewed Distribution, its
  • In a Normal Skewed Distribution, its
  • In a Right Skewed Distribution, its .
  • In

Where, is the sample standard deviation, represents a sample mean.

  • This function will return the result as error when
 1. Any one of the argument is non-numeric. 
 2. If there are fewer than three data points, or the Sample Standard Deviation is zero.

Examples

Spreadsheet
A B C D E
1 0 4 -5 4 1
2 29 9 11 5 2
3 41 11 18 2 3
4 18 10 7 5 5
5 4 5 9 6 6
6 38 9 13 8 11
  • =SKEW(B1:B5) = -0.4369344921493
  • =SKEW(A1:A6) = -0.21921252920
  • =SKEW(C1:C4) = -0.715957010
  • =SKEW(D1:D6) = 0
  • =SKEW(E1:E6) = 1.16584702768

Related Videos

SKEW

See Also

References