Difference between revisions of "Manuals/calci/STDEV"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''STDEV'''</font></font></font><font color="#4...")
 
 
(21 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left"> 
+
<div style="font-size:30px">'''STDEV()'''</div><br/>
 +
*Parameters are set of  numbers.
 +
**STDEV(), estimates standard deviation based on a sample.
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''STDEV'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">(</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''V1'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">,V2,...)</font></font></font>
+
==Description==
 +
*This function gives the Standard Deviation based on a given sample.
 +
*Standard Deviation is the quantity expressed by, how many members of a group differ from the mean value of the group.
 +
*It is the  used as a measure of the dispersion or variation in a distribution.
 +
*It is calculated as the square root of variance.
 +
*In <math> STDEV()</math>, Parameters are set of numbers to find the Standard Deviation.
 +
*Here  First parameter is required. From the second parameter are optional.
 +
*Instead of numbers, we can use the single array or a reference of a array.
 +
*<math> STDEV </math> is defined by the formula:
 +
<math>S.D= \sqrt \frac {\sum(x-\bar{x})^2}{(n-1)} </math>
 +
where <math> \bar{x} </math> is the sample mean of <math> x </math> and <math> n </math> is the total numbers of the given data.
 +
*It is calculated using <math>n-1</math> method.
 +
*This function is considering our given data is the sample of the population.
 +
*Suppose it should consider the data as the entire population, we can use the [[Manuals/calci/STDEVP  | STDEVP ]] function.
 +
*The arguments can be be either numbers or names, array,constants or references that contain numbers.  
 +
*Suppose the array contains text,logical values or empty cells, like that values are not considered.  
 +
*When we are entering logical values and text representations of numbers  as directly, then the arguments are counted.
 +
*Suppose the function have to consider the logical values and text representations of numbers in a reference , we can use the [[Manuals/calci/STDEVA| STDEVA]] function.
 +
*This function will return the result as error when
 +
      1. Any one of the argument is non-numeric.
 +
      2. The arguments containing the error values or text that cannot be translated in to numbers.
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Where V1,V2,......are arguments.</font></font></font>
+
==Examples==
 
+
{| class="wikitable"
</div>
+
|+Spreadsheet
----
+
|-
<div id="1SpaceContent" class="zcontent" align="left"> 
+
! !! A !! B !! C !! D!! E !!F
 
+
|-
<font color="#484848"><font face="Arial, sans-serif"><font size="2">It calculates the Standard deviation for a set of values.</font></font></font>
+
! 1
 
+
| 0 || 4 || 6 ||10 || 12 || 15
</div>
+
|-
----
+
! 2
<div id="7SpaceContent" class="zcontent" align="left"> 
+
| 7 || 3 || -1 || 2 || 25 ||
 
+
|-
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">S D is calculated by the "n-1" method.</font></font></font>
+
! 3
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">The Arguments can be numbers or names, arrays, or references. </font></font></font>
+
| 9  || 11  || 8  ||6 || 15 ||
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">Empty cells, logical values, text, or error values are ignored. </font></font></font>
+
|}
 
 
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">S D formula is: </font></font></font>
 
*
 
 
 
<font color="#484848"></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Where x is the sample mean average (V1,V2........) and n is the sample size.</font></font></font>
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
STDEV
 
  
</div></div>
+
#=STDEV(18,25,76,91,107) = 39.8660256358
----
+
#=STDEV(208,428,511,634,116,589,907) = 267.0566196431
<div id="8SpaceContent" class="zcontent" align="left"> 
+
#=STDEV(A1:F1) = 5.52871293039
 +
#=STDEV(A2:D2) = 3.304037933599
 +
#=STDEV(A3:B3) = 1.414213562373
 +
#=STDEV(12,18,27,32,FALSE) = 12.617448236470002
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">150</font></font></font>
+
==Related Videos==
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">130</font></font></font>
+
{{#ev:youtube|wJGgZJNYaPA|280|center|STANDARD DEVIATION}}
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">165</font></font></font>
+
==See Also==
 +
*[[Manuals/calci/DSTDEV | DSTDEV]]
 +
*[[Manuals/calci/DSTDEVP  | DSTDEVP ]]
 +
*[[Manuals/calci/STDEVP  | STDEVP ]]
 +
*[[Manuals/calci/STDEVA | STDEVA]]
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">132</font></font></font>
+
==References==
 +
*[http://en.wikipedia.org/wiki/Standard_deviation Standard Deviation]
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">110</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">137</font></font></font>
 
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">121</font></font></font>
+
*[[Z_API_Functions | List of Main Z Functions]]
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2"><nowiki>=STDEV(B2:B8) is 18.18</nowiki></font></font></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class="    " |
 
| class="  " | Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f " | 150
 
| class="sshl_f" | 18.184242
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f  " | 130
 
| class="SelectTD" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f  " | 165
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f  " | 132
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f  " | 110
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="sshl_f" | Row6
 
| class="sshl_f  " | 137
 
| class="sshl_f  " |
 
| class="sshl_f  " |
 
| class="sshl_f" |
 
|- class="odd"
 
| class="sshl_f" | Row7
 
| class="sshl_f " | 121
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
  
<div align="left">[[Image:calci1.gif]]</div></div>
+
*[[ Z3 |   Z3 home ]]
----
 
<div id="9SpaceContent" class="zcontent" align="left"><div>[[Image:13.JPG|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/13.JPG]]</div></div>
 
----
 

Latest revision as of 16:17, 8 August 2018

STDEV()


  • Parameters are set of numbers.
    • STDEV(), estimates standard deviation based on a sample.

Description

  • This function gives the Standard Deviation based on a given sample.
  • Standard Deviation is the quantity expressed by, how many members of a group differ from the mean value of the group.
  • It is the used as a measure of the dispersion or variation in a distribution.
  • It is calculated as the square root of variance.
  • In , Parameters are set of numbers to find the Standard Deviation.
  • Here First parameter is required. From the second parameter are optional.
  • Instead of numbers, we can use the single array or a reference of a array.
  • is defined by the formula:

where is the sample mean of and is the total numbers of the given data.

  • It is calculated using method.
  • This function is considering our given data is the sample of the population.
  • Suppose it should consider the data as the entire population, we can use the STDEVP function.
  • The arguments can be be either numbers or names, array,constants or references that contain numbers.
  • Suppose the array contains text,logical values or empty cells, like that values are not considered.
  • When we are entering logical values and text representations of numbers as directly, then the arguments are counted.
  • Suppose the function have to consider the logical values and text representations of numbers in a reference , we can use the STDEVA function.
  • This function will return the result as error when
     1. Any one of the argument is non-numeric. 
     2. The arguments containing the error values or text that cannot be translated in to numbers.

Examples

Spreadsheet
A B C D E F
1 0 4 6 10 12 15
2 7 3 -1 2 25
3 9 11 8 6 15
  1. =STDEV(18,25,76,91,107) = 39.8660256358
  2. =STDEV(208,428,511,634,116,589,907) = 267.0566196431
  3. =STDEV(A1:F1) = 5.52871293039
  4. =STDEV(A2:D2) = 3.304037933599
  5. =STDEV(A3:B3) = 1.414213562373
  6. =STDEV(12,18,27,32,FALSE) = 12.617448236470002

Related Videos

STANDARD DEVIATION

See Also

References