Difference between revisions of "Manuals/calci/STDEVA"

From ZCubes Wiki
Jump to navigation Jump to search
(Created page with "<div id="6SpaceContent" class="zcontent" align="left">   <font color="#484848"><font face="Arial, sans-serif"><font size="2">'''STDEVA'''</font></font></font><font color=...")
 
 
(14 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div id="6SpaceContent" class="zcontent" align="left">  
+
<div style="font-size:30px">'''STDEVA()'''</div><br/>
 +
*Parameters are set of numbers.
 +
**STDEVA(), estimates standard deviation based on a sample, including numbers, text, and logical values.
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''STDEVA'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2"> (</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">'''v1'''</font></font></font><font color="#484848"><font face="Arial, sans-serif"><font size="2">, v2...)</font></font></font>
+
==Description==
 +
*This function gives the Standard Deviation based on a given sample including the logical value and text.
 +
*Standard Deviation is a quantity expressing by how much the members of a group differ from the mean value for the group.
 +
*It is the  used as a measure of the dispersion or variation in a distribution. 
 +
*It is calculated as the square root of variance.
 +
*In <math>STDEVA()</math>, Parameters are set of numbers to find the standard deviation.
 +
*Here  First parameter is required. From the second parameter are optional.
 +
*Instead of numbers we can use the single array or a reference of a array.
 +
*<math> STDEVA </math> is defined by the formula:
 +
<math>S.D= \sqrt \frac {\sum(x-\bar{x})^2}{(n-1)} </math>  
 +
where <math> \bar{x} </math> is the sample mean of x and n is the total numbers in the given data. 
 +
*It is calculated using  "n-1" method.
 +
*This function consider our given data as the sample population.
 +
*Suppose it consider the data as the entire population, we can use the  [[Manuals/calci/STDEVPA  | STDEVPA ]]    function.
 +
*The arguments can be be either numbers or names, array,constants or references that contain numbers.
 +
*Also we can give the text representations of numbers or logical values , like TRUE or FALSE, in a reference.  
 +
*Suppose the arguments containing TRUE which is evaluate as 1, and the arguments containing FALSE which is evaluate as 0.
 +
*Suppose the array contains the empty cells and text values like that values are not considered.
 +
*Suppose the function don't want to consider the logical values and text representations of numbers in a reference, we can use the [[Manuals/calci/STDEV  | STDEV ]] function.
 +
*This function will return the result as error when
 +
    1. Any one of the argument is non-numeric.
 +
    2. The arguments containing the error values or text that cannot be translated in to numbers.
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Where v1,v2.....are arguments. </font></font></font>
+
==Examples==
 +
{| class="wikitable"
 +
|+Spreadsheet
 +
|-
 +
! !! A !! B !! C !! D!! E !!F !!G
 +
|-
 +
! 1
 +
| 208 || 428 || 511 || 634 || 116 || 589 || 907
 +
|-
 +
! 2
 +
| 18 || 25 || 76 || 91 || 107 || ||
 +
|}
  
</div>
+
#=STDEVA(A2:E2) = 39.8660256358
----
+
#=STDEVA(A1:G1) = 267.0566196431
<div id="1SpaceContent" class="zcontent" align="left">  <font color="#484848"><font face="Arial, sans-serif"><font size="2">
+
#=STDEVA(4,8,TRUE) = 3.51188458428
 +
#=STDEVA(12,18,27,32,false) = 12.617448236470002
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">In standard deviation the values are dispersed from the mean. </font></font></font>
+
==Related Videos==
  
</font></font></font></div>
+
{{#ev:youtube|wJGgZJNYaPA|280|center|STANDARD DEVIATION}}
----
 
<div id="7SpaceContent" class="zcontent" align="left"> 
 
  
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">S D is calculated by the "n-1" method.</font></font></font>
+
==See Also==
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">The Arguments can be numbers or names, arrays, or references. </font></font></font>
+
*[[Manuals/calci/DSTDEV | DSTDEV]]
* <font color="#484848"><font face="Arial, sans-serif"><font size="2">Empty cells, logical values, text, or error values are ignored. </font></font></font>
+
*[[Manuals/calci/DSTDEVP  | DSTDEVP ]]
 +
*[[Manuals/calci/STDEVP  | STDEVP ]]
 +
*[[Manuals/calci/STDEV | STDEV ]]
  
<font color="#484848"><font face="Arial, sans-serif"><font size="2">S D formula is: </font></font></font>
+
==References==
 +
*[http://en.wikipedia.org/wiki/Standard_deviation Standard Deviation]
  
<font color="#484848" face="Arial"></font>
 
  
<font color="#484848"></font>
+
*[[Z_API_Functions | List of Main Z Functions]]
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2"></font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">Where x is the sample mean average (V1,V2........) and n is the sample size.</font></font></font>
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
STDEVA
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left"> 
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">150</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">130</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">165</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">132</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">110</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">137</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">121</font></font></font>
 
 
 
<font color="#484848"><font face="Arial, sans-serif"><font size="2">'''<nowiki>=STDEVA(B2:B8) is 18.18</nowiki>'''</font></font></font>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class="    " |
 
| class="  " | Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f " | 150
 
| class="sshl_f" | 18.184242
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f  " | 130
 
| class="SelectTD" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f  " | 165
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f  " | 132
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f  " | 110
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| class="sshl_f" | Row6
 
| class="sshl_f  " | 137
 
| class="sshl_f  " |
 
| class="sshl_f  " |
 
| class="sshl_f" |
 
|- class="odd"
 
| class="sshl_f" | Row7
 
| class="sshl_f " | 121
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
  
<div align="left">[[Image:calci1.gif]]</div></div>
+
*[[ Z3 |   Z3 home ]]
----
 
<div id="9SpaceContent" class="zcontent" align="left"><div>[[Image:12.JPG|100%px|http://store.zcubes.com/33975CA25A304262905E768B19753F5D/Uploaded/12.JPG]]</div></div>
 
----
 

Latest revision as of 16:18, 8 August 2018

STDEVA()


  • Parameters are set of numbers.
    • STDEVA(), estimates standard deviation based on a sample, including numbers, text, and logical values.

Description

  • This function gives the Standard Deviation based on a given sample including the logical value and text.
  • Standard Deviation is a quantity expressing by how much the members of a group differ from the mean value for the group.
  • It is the used as a measure of the dispersion or variation in a distribution.
  • It is calculated as the square root of variance.
  • In , Parameters are set of numbers to find the standard deviation.
  • Here First parameter is required. From the second parameter are optional.
  • Instead of numbers we can use the single array or a reference of a array.
  • is defined by the formula:

where is the sample mean of x and n is the total numbers in the given data.

  • It is calculated using "n-1" method.
  • This function consider our given data as the sample population.
  • Suppose it consider the data as the entire population, we can use the STDEVPA function.
  • The arguments can be be either numbers or names, array,constants or references that contain numbers.
  • Also we can give the text representations of numbers or logical values , like TRUE or FALSE, in a reference.
  • Suppose the arguments containing TRUE which is evaluate as 1, and the arguments containing FALSE which is evaluate as 0.
  • Suppose the array contains the empty cells and text values like that values are not considered.
  • Suppose the function don't want to consider the logical values and text representations of numbers in a reference, we can use the STDEV function.
  • This function will return the result as error when
   1. Any one of the argument is non-numeric. 
   2. The arguments containing the error values or text that cannot be translated in to numbers.

Examples

Spreadsheet
A B C D E F G
1 208 428 511 634 116 589 907
2 18 25 76 91 107
  1. =STDEVA(A2:E2) = 39.8660256358
  2. =STDEVA(A1:G1) = 267.0566196431
  3. =STDEVA(4,8,TRUE) = 3.51188458428
  4. =STDEVA(12,18,27,32,false) = 12.617448236470002

Related Videos

STANDARD DEVIATION

See Also

References