Difference between revisions of "Manuals/calci/SINH"
Jump to navigation
Jump to search
(22 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
− | <div style="font-size:30px">'''SINH( | + | <div style="font-size:30px">'''SINH(x)'''</div><br/> |
− | * where | + | * where x is any real number. |
+ | **SINH(), returns the hyperbolic sine of a number | ||
+ | |||
+ | |||
==Description== | ==Description== | ||
− | *This function gives the | + | *This function gives the Hyperbolic SIN of 'x'. |
− | * | + | *It's also called as Circular function. |
− | * Here < | + | *Here <math>SINH(x)=\frac{e^x-e^{-x}}{2}</math> or <math>-iSIN(ix)</math>, where <math>i</math> is the imaginary unit and <math>i=\sqrt{-1}</math> |
− | * | + | *The relation between Hyperbolic & Trigonometric function is <math>Sin(ix)=iSinh(x)</math> & <math>Sinh(ix)= iSin(x)</math> |
− | *SINH(- | + | *SINH(-x) = -SINH(x) |
== Examples == | == Examples == | ||
− | '''SINH( | + | '''SINH(x)''' |
− | *''' | + | *'''x''' is any real number. |
{|id="TABLE1" class="SpreadSheet blue" | {|id="TABLE1" class="SpreadSheet blue" | ||
|- class="even" | |- class="even" | ||
− | |'''SINH( | + | |'''SINH(x)''' |
− | |'''Value | + | |'''Value ''' |
|- class="odd" | |- class="odd" | ||
Line 31: | Line 34: | ||
| -10.0178749274099 | | -10.0178749274099 | ||
|} | |} | ||
+ | |||
+ | ==Related Videos== | ||
+ | |||
+ | {{#ev:youtube|Wfpb-fniSSk|280|center|Hyperbolic SIN}} | ||
==See Also== | ==See Also== | ||
Line 44: | Line 51: | ||
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions] | *[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions] | ||
*[http://en.wikipedia.org/wiki/Hyperbolic_function Hyperbolic Function] | *[http://en.wikipedia.org/wiki/Hyperbolic_function Hyperbolic Function] | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | *[[Z_API_Functions | List of Main Z Functions]] | ||
+ | |||
+ | *[[ Z3 | Z3 home ]] |
Latest revision as of 15:26, 3 July 2018
SINH(x)
- where x is any real number.
- SINH(), returns the hyperbolic sine of a number
Description
- This function gives the Hyperbolic SIN of 'x'.
- It's also called as Circular function.
- Here or , where is the imaginary unit and
- The relation between Hyperbolic & Trigonometric function is &
- SINH(-x) = -SINH(x)
Examples
SINH(x)
- x is any real number.
SINH(x) | Value |
SINH(0) | 0 |
SINH(10) | 11013.23287 |
SINH(-3) | -10.0178749274099 |
Related Videos
See Also
References