Difference between revisions of "Manuals/calci/SECH"

From ZCubes Wiki
Jump to navigation Jump to search
 
(9 intermediate revisions by 4 users not shown)
Line 1: Line 1:
<div style="font-size:30px">'''SECH(z)'''</div><br/>
+
<div style="font-size:30px">'''SECH(x)'''</div><br/>
* where z is any real number
+
* where x is any real number.
 +
**SECH(), returns the inverse hyperbolic secant of a number.
 +
 
 
==Description==
 
==Description==
  
* This function gives the hyperbolic Secant of 'z',  
+
* This function gives the hyperbolic Secant of 'x',  
 
* It is also called as Circular function.
 
* It is also called as Circular function.
 
* SECH is the reciprocal of COSH function.
 
* SECH is the reciprocal of COSH function.
* SECH(z)=<math>cosh (z)^{-1}</math> i.e, <math>\frac{ 2} {e^z+e^-z} </math>or SEC(iz). where 'I' is the imaginary unit and i=sqrt(-1).
+
* SECH(x)=<math>(cosh (x))^{-1}</math> i.e, <math>\frac{ 2} {e^x+e^{-x}} </math> or SEC(iz). where 'i' is the imaginary unit and <math>i=\sqrt{-1}</math>
* Also relation between hyperbolic &trignometric function is  
+
* Also relation between Hyperbolic & Trigonometric function is <math>Sec(ix) = Sech(x)</math> & <math>Sech(ix) = Sec(x)</math>
* sec(iz)=sechz&sec(iz)=sec z
+
*SECH(-x) = SECH(x)
  
 
== Examples ==
 
== Examples ==
'''SECH(z)'''
+
'''SECH(x)'''
*'''z''' is any real number.
+
*'''x''' is any real number.
  
 
{|id="TABLE1" class="SpreadSheet blue"
 
{|id="TABLE1" class="SpreadSheet blue"
  
 
|- class="even"
 
|- class="even"
|'''SECH(z)'''
+
|'''SECH(x)'''
|'''Value(Radian)'''
+
|'''Value'''
  
 
|- class="odd"
 
|- class="odd"
Line 30: Line 32:
 
|- class="odd"
 
|- class="odd"
 
| SECH(7)
 
| SECH(7)
| SECH(7)=0.001823762414
+
| 0.001823762414
 
|}
 
|}
  
==See Also==
+
==Related Videos==
  
*[[Manuals/calci/COS| COS]]
+
{{#ev:youtube|EmJKuQBEdlc|280|center|Hyperbolic SEC}}
  
*[[Manuals/calci/COSH| COSH]]
+
==See Also==
  
 +
*[[Manuals/calci/SEC | SEC]]
 
*[[Manuals/calci/DSEC | DSEC]]
 
*[[Manuals/calci/DSEC | DSEC]]
 +
*[[Manuals/calci/COSH | COSH]]
  
 
==References==
 
==References==
Line 45: Line 49:
 
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions]
 
*[http://en.wikipedia.org/wiki/Trigonometric_functions List of Trigonometric Functions]
 
*[http://en.wikipedia.org/wiki/Hyperbolic_function  Hyperbolic Function]
 
*[http://en.wikipedia.org/wiki/Hyperbolic_function  Hyperbolic Function]
 +
 +
 +
 +
 +
*[[Z_API_Functions | List of Main Z Functions]]
 +
 +
*[[ Z3 |  Z3 home ]]

Latest revision as of 15:39, 3 July 2018

SECH(x)


  • where x is any real number.
    • SECH(), returns the inverse hyperbolic secant of a number.

Description

  • This function gives the hyperbolic Secant of 'x',
  • It is also called as Circular function.
  • SECH is the reciprocal of COSH function.
  • SECH(x)= i.e, or SEC(iz). where 'i' is the imaginary unit and
  • Also relation between Hyperbolic & Trigonometric function is &
  • SECH(-x) = SECH(x)

Examples

SECH(x)

  • x is any real number.
SECH(x) Value
SECH(0) 1
SECH(10) 0.00009079985933781728
SECH(7) 0.001823762414

Related Videos

Hyperbolic SEC

See Also

References