Difference between revisions of "Manuals/calci/IMDIV"

From ZCubes Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
*step 2: To find the conjugate of the denominator.
 
*step 2: To find the conjugate of the denominator.
 
*step 3:To mutiply the numerator and denominator with conjugate.
 
*step 3:To mutiply the numerator and denominator with conjugate.
i.e. IMDIV(z1,z2)=(a+ib)/(c+id)=((a+ib)/(c+id))*((c-id)/(c-id))
+
i.e. IMDIV(z1,z2)=(a+ib)/(c+id)=((a+ib)/(c+id))*((c-id)/(c-id))=[(ac+bd)/(c^2+d^2)]+[(bc-ad)i/[(c^2+d^2)]
                            =[(ac+bd)/(c^2+d^2)]+[(bc-ad)i/[(c^2+d^2)]
 
  
 
==Examples==
 
==Examples==
#IMEXP("2+3i")=-7.315110094901102+1.0427436562359i
+
#IMDIV("4+2i","3-i")=(4+2i/3-i)*(3+i/3+i)=(12+10i+2i^2)/(3^2-i^2)=10+10i/10 (because i^2=-1)= 1+i/1=1+i
#IMEXP("4-5i")=15.4874305606508+52.355491418482i
+
#IMDIV("3-5i,2-6i")=0.9+0.2i
#IMEXP("6")=403.428793492735
+
#IMDIV("5","2+3i")=0.769-1.153i
#IMEXP("2i")=-0.416146836547142+0.909297426825682i
+
#IMDIV("1+i","2")=0.5+0.5i
#IMEXP("0")=1 andIMEXP("0i")=1
 
  
 
==See Also==
 
==See Also==
Line 22: Line 20:
 
*[[Manuals/calci/IMAGINARY  | IMAGINARY ]]
 
*[[Manuals/calci/IMAGINARY  | IMAGINARY ]]
 
*[[Manuals/calci/IMREAL  | IMREAL ]]
 
*[[Manuals/calci/IMREAL  | IMREAL ]]
*[[Manuals/calci/EXP  | EXP ]]
+
 
  
 
==References==
 
==References==
 
[http://en.wikipedia.org/wiki/Exponential_function| Exponential function]
 
[http://en.wikipedia.org/wiki/Exponential_function| Exponential function]

Revision as of 03:46, 25 November 2013

IMDIV(z1,z2)


  • where 'z1' and 'z2' are complex numbers.

Description

  • This function gives the division of two complex numbers.
  • This function used to remove the I (imaginary unit) from the denominator.
  • In IMDIV(z1,z2), where z1,z2 are the two complex numbers is in the form of z1=a+ib andz2=c+id, where a,b,c &d are real numbers i is the imaginary unit, i=sqrt(-1).
  • To do the division of complex number we have follow the steps:step1: we have to write the complex number is in the fraction form.
  • step 2: To find the conjugate of the denominator.
  • step 3:To mutiply the numerator and denominator with conjugate.

i.e. IMDIV(z1,z2)=(a+ib)/(c+id)=((a+ib)/(c+id))*((c-id)/(c-id))=[(ac+bd)/(c^2+d^2)]+[(bc-ad)i/[(c^2+d^2)]

Examples

  1. IMDIV("4+2i","3-i")=(4+2i/3-i)*(3+i/3+i)=(12+10i+2i^2)/(3^2-i^2)=10+10i/10 (because i^2=-1)= 1+i/1=1+i
  2. IMDIV("3-5i,2-6i")=0.9+0.2i
  3. IMDIV("5","2+3i")=0.769-1.153i
  4. IMDIV("1+i","2")=0.5+0.5i

See Also


References

Exponential function