Difference between revisions of "Manuals/calci/IMEXP"

From ZCubes Wiki
Jump to navigation Jump to search
Line 10: Line 10:
  
 
==Examples==
 
==Examples==
#IMEXP("2+3i")=-7.315110094901102+1.0427436562359i
+
#=IMEXP("2+3i") = -7.315110094901102+1.0427436562359i
#IMEXP("4-5i")=15.4874305606508+52.355491418482i
+
#=IMEXP("4-5i") = 15.4874305606508+52.355491418482i
#IMEXP("6")=403.428793492735
+
#=IMEXP("6") = 403.428793492735
#IMEXP("2i")=-0.416146836547142+0.909297426825682i
+
#=IMEXP("2i") = -0.416146836547142+0.909297426825682i
#IMEXP("0")=1 andIMEXP("0i")=1
+
#=IMEXP("0") = 1 and IMEXP("0i") = 1
  
 
==See Also==
 
==See Also==

Revision as of 05:14, 25 November 2013

IMEXP(z)


  • where is the complex number.

Description

  • This function gives the exponential of a complex number.
  • In , is the complex number of the form , & are real numbers & is the imaginary unit. .
  • Euler's formula states that , for any real number and is the base of the natural logarithm.
  • The approximate value of the constant e=2.718281828459045 and it is equal to . So the exponential of a complex number is : .
  • When imaginary part is '0', it will give the exponent value of the real number. i.e when imaginary number is '0'.
  • We can use COMPLEX function to convert the real and imaginary coefficients to a complex number.

Examples

  1. =IMEXP("2+3i") = -7.315110094901102+1.0427436562359i
  2. =IMEXP("4-5i") = 15.4874305606508+52.355491418482i
  3. =IMEXP("6") = 403.428793492735
  4. =IMEXP("2i") = -0.416146836547142+0.909297426825682i
  5. =IMEXP("0") = 1 and IMEXP("0i") = 1

See Also

References

Exponential function