Difference between revisions of "Manuals/calci/CHITEST"

From ZCubes Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
  Each cell has an expected frequency of at least five.
 
  Each cell has an expected frequency of at least five.
 
*The <math>\chi^2</math> test first calculates a <math>\chi^2</math> statistic using the formula:
 
*The <math>\chi^2</math> test first calculates a <math>\chi^2</math> statistic using the formula:
<math>\chi^2 = \sum_{i=1}^{columns} \sum_{j=1}^{rows} \frac{(observed _ij-expected _ij)^{2}}{grand total}</math>
+
<math>\chi^2 = \sum_{i=1}^{columns} \sum_{j=1}^{rows} \frac{(observed _{ij}-expected _{ij})^{2}}{grand total}</math>
*<math>observed ij</math> is the array of the observed values in a given set of values
+
*<math>observed _{ij}</math> is the array of the observed values in a given set of values
*<math>expected ij = \frac{(column _i total)*(row _j total)}{grand total} </math>
+
*<math>expected _{ij} = \frac{(column _i total)*(row _j total)}{grand total} </math>
 
*observed and expected must have the same number of rows and columns and there must be atleast 2 values in each.
 
*observed and expected must have the same number of rows and columns and there must be atleast 2 values in each.
 
*A low result of <math>\chi^2</math> is an indicator of independence.
 
*A low result of <math>\chi^2</math> is an indicator of independence.
 
*From the formula of <math>\chi^2</math> we will get <math>\chi^2</math> is always positive or 0.
 
*From the formula of <math>\chi^2</math> we will get <math>\chi^2</math> is always positive or 0.
*0 only if <math>observed _ij = expected _ij</math> for each <math>i</math> and <math>j</math>.  
+
*0 only if <math>observed _{ij} = expected _{ij}</math> for each <math>i</math> and <math>j</math>.  
 
*CHITEST uses the <math>\chi^2</math> distribution with the number of Degrees of Freedom df.
 
*CHITEST uses the <math>\chi^2</math> distribution with the number of Degrees of Freedom df.
 
*where <math>df=(r-1)(c-1),r>1</math> and <math>c>1</math>.
 
*where <math>df=(r-1)(c-1),r>1</math> and <math>c>1</math>.

Revision as of 22:42, 26 November 2013

CHITEST(ar,er)


  • is the array of observed values
  • is the array of expected values

Description

  • This function gives the the value from the chi-squared distribution and the appropriate degrees of freedom. i.e it calculates  statistic and degrees of freedom, then calls CHIDIST.

The conditions of test is

The table should be 2x2 or more than 2x2
Each observations should not be dependent
All expected values should be 10 or greater. 
Each cell has an expected frequency of at least five.
  • The test first calculates a statistic using the formula:

  • is the array of the observed values in a given set of values
  • observed and expected must have the same number of rows and columns and there must be atleast 2 values in each.
  • A low result of is an indicator of independence.
  • From the formula of we will get is always positive or 0.
  • 0 only if for each and .
  • CHITEST uses the distribution with the number of Degrees of Freedom df.
  • where and .
  • If and , then or if and , then .
If  then this function will give the error result

Examples

A student investigated the chance of getting viral fever in a school for a period that took vitamin tablets every day. The total number of students 880. In that 639 students didn't get viral fever and 241 students got fever .But the expected ratio is 1:3
Answer

  • If the ratio is 1:3 and the total number of observed individuals is 880, then the expected numerical values should be: 660 will not get fever and 220 students will get fever.
No Fever Get Fever
Observed Values 639 241
Expected Values 660 220
0.668 2
  • The value is 2.668
  • Now
  • From the Chi Squared Distribution probability table with is 1, the value of 2.668 is 0.10.

CHITEST(or,er) = 0.10

See Also

References

CHI-SQUARE Distribution