Difference between revisions of "Manuals/calci/BETAINV"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<div style="font-size:30px">'''BETAINV(prob,alpha,beta,a,b)'''</div><br/>
 
<div style="font-size:30px">'''BETAINV(prob,alpha,beta,a,b)'''</div><br/>
*Where prob is the probability value associated with the beta distribution.  
+
*<math>prob</math> is the probability value associated with the beta distribution.  
*Alpha& beta are the values of  the shape parameter.
+
*<math>\alpha</math> & <math>beta</math> are the values of  the shape parameter.
*a&b the lower and upper limit to the interval of x.
+
*<math>a</math> & <math>b</math> the lower and upper limit to the interval of <math>x</math>.
  
 
==Description==
 
==Description==
*This function gives the inverse value of cumulative beta probability distribution.
+
*This function gives the inverse value of Cumulative Beta Probability Distribution.
*It is called inverted beta function or beta prime.
+
*It is called Inverted Beta Function or Beta Prime.
*In <math>BETAINV(prob,alpha,beta,a,b)</math>, prob is the probability value of the associated with beta distribution, alpha and beta are the values of the  two positive shape parameters and a and b are the lower and upper limit. *Normally the limit values are optional, i.e., when we are giving the values of a&b then the result value is from a and b, otherwise when we are omitting the values a and b by default it will consider a=0 and b=1, so the result value is from 0 and1.
+
*In <math>BETAINV(prob,\alpha,\beta,a,b)</math>, <math>prob</math> is the probability value associated with Beta Distribution, <math>alpha</math> and <math>beta</math> are the values of two positive shape parameters and <math>a</math> and <math>b</math> are the lower and upper limit.
*If <math>BETADIST(x,alpha,beta,a,b)=prob</math>, then <math>BETAINV(prob,alpha,beta,a,b)=x</math>.  
+
*Normally the limit values are optional, i.e. when we are giving the values of <math>a</math>&<math>b</math> then the result value is from <math>a</math> and <math>b</math>.
*<math>BETAINV</math> using the iterating method to find the value of <math>x</math>.suppose the iteration has not converged after 100 searches, then the function gives the error result.  
+
*When we are omitting the values <math>a</math> and <math>b</math>, by default it will consider <math>a=0</math> and <math>b=1</math>, so the result value is from <math>0</math> and <math>1</math>.
 +
*If <math>BETADIST(x,\alpha,\beta,a,b)=prob</math>, then <math>BETAINV(prob,\alpha,\beta,a,b)=x</math>.  
 +
*<math>BETAINV</math> use the iterating method to find the value of <math>x</math>.suppose the iteration has not converged after 100 searches, then the function gives the error result.  
 
*This function will give the error result when   
 
*This function will give the error result when   
#Any one of the arguments are nonnumeric
+
1.Any one of the arguments are non-numeric
#<math>alpha</math> or <math>beta</math><=0
+
2.<math>\alpha</math> or <math>\beta \le 0 </math>
#x<a ,x>b, or a=b
+
3.<math>x<a ,x>b</math> or <math>a=b</math>
#we are not mentioning the limit values a and b, by default it will consider the standard cumulative beta distribution, a= 0 and b= 1.
+
4.we are not mentioning the limit values for <math>a</math>&<math>b</math>, by default it will consider the Standard Cumulative Beta Distribution, <math>a = 0</math> and <math>b = 1</math>.
  
 
==Examples==
 
==Examples==
#BETAINV(0.2060381025,5,9,2,6)=3
+
#BETAINV(0.2060381025,5,9,2,6) = 3
#BETAINV(0.359492343,8,10)=0.399999976(EXCEL) is approximate to 0.4=1.75(calci)
+
#BETAINV(0.359492343,8,10) = 1.75
#BETAINV(0.685470581,5,8,2,6)= 3.78378773(excel)=3.75(calci)
+
#BETAINV(0.685470581,5,8,2,6) = 3.75
#BETAINV(0.75267,1,7,7,9)=7.361844063(Excel)=7.25(calci)
+
#BETAINV(0.75267,1,7,7,9) = 7.25
#BETAINV(0.5689,-2,4,3,5)=NAN, because alpha<0.
+
#BETAINV(0.5689,-2,4,3,5) = NAN, because <math>\alpha < 0</math>.
  
 
==See Also==
 
==See Also==

Revision as of 02:59, 4 December 2013

BETAINV(prob,alpha,beta,a,b)


  • is the probability value associated with the beta distribution.
  • & are the values of the shape parameter.
  • & the lower and upper limit to the interval of .

Description

  • This function gives the inverse value of Cumulative Beta Probability Distribution.
  • It is called Inverted Beta Function or Beta Prime.
  • In , is the probability value associated with Beta Distribution, and are the values of two positive shape parameters and and are the lower and upper limit.
  • Normally the limit values are optional, i.e. when we are giving the values of & then the result value is from and .
  • When we are omitting the values and , by default it will consider and , so the result value is from and .
  • If , then .
  • use the iterating method to find the value of .suppose the iteration has not converged after 100 searches, then the function gives the error result.
  • This function will give the error result when
1.Any one of the arguments are non-numeric
2. or 
3. or 
4.we are not mentioning the limit values  for &, by default it will consider the Standard Cumulative Beta Distribution,  and .

Examples

  1. BETAINV(0.2060381025,5,9,2,6) = 3
  2. BETAINV(0.359492343,8,10) = 1.75
  3. BETAINV(0.685470581,5,8,2,6) = 3.75
  4. BETAINV(0.75267,1,7,7,9) = 7.25
  5. BETAINV(0.5689,-2,4,3,5) = NAN, because .

See Also

References

Beta Distribution