Difference between revisions of "Manuals/calci/tan"
Jump to navigation
Jump to search
| Line 14: | Line 14: | ||
<math>CORREL(X,Y)= r_{xy}= \frac{\sum_{i=1}^n (xi-\bar x)(yi-\bar y)}{\sqrt{ \sum_{i=1}^n (xi-\bar x)^2 \sum{i=1}^n (yi-\bar y)^2}</math> | <math>CORREL(X,Y)= r_{xy}= \frac{\sum_{i=1}^n (xi-\bar x)(yi-\bar y)}{\sqrt{ \sum_{i=1}^n (xi-\bar x)^2 \sum{i=1}^n (yi-\bar y)^2}</math> | ||
| − | <math>\frac{\sum_{i=1}^n (xi-\bar x)(yi-\bar y)</math> | + | <math>\frac{\sum_{i=1}^n (xi-\bar x)(yi-\bar y)}{\sqrt{ \sum_{i=1}^n (xi-\bar x)^2 \sum{i=1}^n (yi-\bar y)^2}}</math> |
<math>\sqrt{ \sum_{i=1}^n (xi-\bar x)^2 \sum{i=1}^n (yi-\bar y)^2}</math> | <math>\sqrt{ \sum_{i=1}^n (xi-\bar x)^2 \sum{i=1}^n (yi-\bar y)^2}</math> | ||
Revision as of 23:22, 9 December 2013
TAN(n)
- where n is in Radians
- by default Calci use Radian as angle
DTAN can be used if the angle is in degrees.
The angle can be a single value or any complex array of values. TAN= SIN / COS
For example TAN(1..100) can give an array of the results, which is the TAN value for each of the elements in the array. The array could be of any shape.
Description
Failed to parse (syntax error): {\displaystyle CORREL(X,Y)= r_{xy}= \frac{\sum_{i=1}^n (xi-\bar x)(yi-\bar y)}{\sqrt{ \sum_{i=1}^n (xi-\bar x)^2 \sum{i=1}^n (yi-\bar y)^2}}
Examples
- Example 1
| A | B | C | D | E | |
|---|---|---|---|---|---|
| 1 | 5 | 7 | 8 | ||
| 2 | 7 | 4 | |||
| 3 | 8 | ||||
| 4 | 4 | -5 | 9 | ||
| 5 |
From the above table values:
| 15 | 21 | 24 |
| 24 | -30 | 54 |
- Example 2
| 7 | 5 |
| 2 | 3 |
| 6 | 0 |
| 9 | 8 |
| 8 | -4 | 11 |
| 2 | 7 | 5 |
- Here Matrix A is of order 4x2 and Matrix B is of order 2x3.
- So the Product Matrix is of order 4x3. i.e
1st Row 7*8+5*2 = 66 ; 7*(-4)+5*7 = 7 ; 7*11+5*5 = 102 2nd Row 2*8+3*2 = 22 ; 2*(-4)+3*7 = 13 ; 2*11+3*5 = 37 and so on
- =MMULT(B2:C5,D2:F3) gives
| 66 | 7 | 102 |
| 22 | 13 | 37 |
| 48 | -24 | 66 |
| 88 | 20 | 139 |