Difference between revisions of "Manuals/calci/FISHERINV"
Jump to navigation
Jump to search
Line 11: | Line 11: | ||
==Examples== | ==Examples== | ||
− | #FISHERINV(0.6389731838)=0.56419999998 | + | #FISHERINV(0.6389731838) = 0.56419999998 |
− | #FISHERINV(0)=0 | + | #FISHERINV(0) = 0 |
− | #FISHERINV(0.1234)=0.1227774315035342 | + | #FISHERINV(0.1234) = 0.1227774315035342 |
− | #FISHERINV(1)=0.761594155955765 | + | #FISHERINV(1) = 0.761594155955765 |
− | #FISHERINV(-0.4296)=-0.4049869686465480 | + | #FISHERINV(-0.4296) = -0.4049869686465480 |
==See Also== | ==See Also== |
Revision as of 00:19, 10 December 2013
FISHERINV(y)
- is the number.
Description
- This function gives the inverse of the Fisher transformation.
- We use this to test the correlations between set of data.
- The Inverse of the Fisher transformation is: i.e , then
- It can be used to construct a confidence interval.
- A confidence interval (CI) is a type of interval estimate of a population parameter and is used to indicate the reliability of an estimate.
This function will give the result as error when the value is non-numeric.
Examples
- FISHERINV(0.6389731838) = 0.56419999998
- FISHERINV(0) = 0
- FISHERINV(0.1234) = 0.1227774315035342
- FISHERINV(1) = 0.761594155955765
- FISHERINV(-0.4296) = -0.4049869686465480
See Also