Difference between revisions of "Manuals/calci/IMARGUMENT"

From ZCubes Wiki
Jump to navigation Jump to search
Line 9: Line 9:
 
*<math>I</math> imaginary unit .<math>i=\sqrt{-1}</math>.
 
*<math>I</math> imaginary unit .<math>i=\sqrt{-1}</math>.
 
*An argument of the complex number <math>z = x + iy</math> is any real quantity <math>\psi</math> such that <math>z = x + i y</math> = <math>r cosφ + i r sinφ</math> for some positive real number <math>r</math>.  
 
*An argument of the complex number <math>z = x + iy</math> is any real quantity <math>\psi</math> such that <math>z = x + i y</math> = <math>r cosφ + i r sinφ</math> for some positive real number <math>r</math>.  
*Where <math>r = |z| = \sqrt{x^2+y^2}</math> and <math>\psi \in [(-\Pi(),\Pi()]<math>.  
+
*Where <math>r = |z| = \sqrt{x^2+y^2}</math> and <math>\psi \in [(-\Pi(),\Pi()]</math>.  
*The argument of a complex number is calculated by <math>arg(z)= tan^{-1}(\frac{y}{x}) =\theta<math> in Radians.
+
*The argument of a complex number is calculated by <math>arg(z)= tan^{-1}(\frac{y}{x}) =\theta</math> in Radians.
 
*To change the Radian value to Degree we can use DEGREES function or we can multiply the answer with <math>\frac{180}{\pi}</math>.
 
*To change the Radian value to Degree we can use DEGREES function or we can multiply the answer with <math>\frac{180}{\pi}</math>.
 
*We can use COMPLEX function to convert real and imaginary number in to a complex number.
 
*We can use COMPLEX function to convert real and imaginary number in to a complex number.

Revision as of 00:54, 16 December 2013

IMARGUMENT(z)


  • is the complex number is of the form
  • is the order of the Bessel function and is an integer

Description

  • This function gives the principal value of the argument of the complex-valued expression .
  • i.e The angle from the positive axis to the line segment is called the Argument of a complex number.
  • In this function angle value is in Radians.
  • Here IMARGUMENT(z), Where is the complex number in the form of . i.e & are the real numbers.
  • imaginary unit ..
  • An argument of the complex number is any real quantity such that = Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r cosφ + i r sinφ} for some positive real number .
  • Where and .
  • The argument of a complex number is calculated by in Radians.
  • To change the Radian value to Degree we can use DEGREES function or we can multiply the answer with .
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

Examples

  1. IMARGUMENT("3-2i") = -0.588002604
  2. IMARGUMENT("5+6i") = 0.876058051
  3. IMARGUMENT("2") = 0
  4. IMARGUMENT("4i") = 1.570796327
  5. DEGREES(IMARGUMENT("2+2i")) = 45

References

Bessel Function