Difference between revisions of "Manuals/calci/IMSQRT"

From ZCubes Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
<math>\sqrt{z}=\sqrt{x+iy}=\sqrt{r.e^iθ}=\sqrt{r}(cos(θ/2)+isin(θ/2)</math>
 
<math>\sqrt{z}=\sqrt{x+iy}=\sqrt{r.e^iθ}=\sqrt{r}(cos(θ/2)+isin(θ/2)</math>
 
*where <math>r</math> is the modulus of <math>z</math>. <math>r=\sqrt{x^2+y^2}</math>  
 
*where <math>r</math> is the modulus of <math>z</math>. <math>r=\sqrt{x^2+y^2}</math>  
*And <math>\theta</math>θ is the argument of <math>z</math>. <math> θ=tan^{-1}(y/x)</math> also θ∈(-Pi(),Pi()].
+
*And <math>\theta</math> is the argument of <math>z</math>. <math> θ=tan^{-1}(y/x)</math> also θ∈(-Pi(),Pi()].
 
*We can use COMPLEX function to convert real and imaginary number in to a complex number.
 
*We can use COMPLEX function to convert real and imaginary number in to a complex number.
  

Revision as of 21:42, 25 December 2013

IMSQRT(z)


  • is the complex number is of the form


Description

  • This function gives square root of a complex number.
  • IMSQRT(z), Where z is the complex number is in the form of "x+iy".
  • where x&y are the real numbers.'i' imaginary unit ..
  • The square root of a complex number is defined by:

Failed to parse (syntax error): {\displaystyle \sqrt{z}=\sqrt{x+iy}=\sqrt{r.e^iθ}=\sqrt{r}(cos(θ/2)+isin(θ/2)}

  • where is the modulus of .
  • And is the argument of . Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle θ=tan^{-1}(y/x)} also θ∈(-Pi(),Pi()].
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

Examples

  1. =IMSQRT("2+3i")=1.67414922803554+0.895977476129838i
  2. =IMSQRT("-4-5i")=1.09615788950152-2.2806933416653i
  3. =IMSQRT("7")=2.64575131106459
  4. =IMSQRT("8i")=2+2i

See Also


References

Binary Logarithm