Difference between revisions of "Manuals/calci/IMPRODUCT"

From ZCubes Wiki
Jump to navigation Jump to search
Line 4: Line 4:
 
*This function gives the product of the complex numbers.  
 
*This function gives the product of the complex numbers.  
 
*In IMPRODUCT(z1,z2,z3,…), where z1,z2,z3,... are the complex numbers and is in the form of <math>a+ib</math>.  
 
*In IMPRODUCT(z1,z2,z3,…), where z1,z2,z3,... are the complex numbers and is in the form of <math>a+ib</math>.  
*where <math>a</math> & <math>b</math> are the real numbers.<math>i</math>is the imaginary unit .<math>i=\sqrt(-1)</math>.
+
*where <math>a</math> & <math>b</math> are the real numbers.<math>i</math>is the imaginary unit .<math>i=\sqrt{-1}</math>.
 
*The multiplication of two complex numbers is a complex number.
 
*The multiplication of two complex numbers is a complex number.
 
*Let <math>z1=a+ib</math> and <math>z2=c+id</math>.
 
*Let <math>z1=a+ib</math> and <math>z2=c+id</math>.

Revision as of 23:40, 18 December 2013

IMPRODUCT(z1,z2,z3)


  • are the complex numbers of the form

Description

  • This function gives the product of the complex numbers.
  • In IMPRODUCT(z1,z2,z3,…), where z1,z2,z3,... are the complex numbers and is in the form of .
  • where & are the real numbers.is the imaginary unit ..
  • The multiplication of two complex numbers is a complex number.
  • Let and .
  • Then the product of two complex number is .
  • In this function is required. are optional.
  • We can use COMPLEX function to convert real and imaginary number in to a complex number.

Examples

=IMPRODUCT("1+3i","5+2i") = -1+17i
=IMPRODUCT("i","3-i") = 1+3i
=IMPRODUCT("5","-2+4i") = -10+20i
=IMPRODUCT("2+3i","4+6i","3+5i") = -150+22i
=IMPRODUCT("-6-2i","-1-i") = 4+8i

See Also

References

Binary Logarithm