Difference between revisions of "Manuals/calci/INTERCEPT"

From ZCubes Wiki
Jump to navigation Jump to search
Line 19: Line 19:
 
* The arrays  values are  disregarded when it is contains text, logical values or empty cells.  
 
* The arrays  values are  disregarded when it is contains text, logical values or empty cells.  
 
*This function will return the result as error when any one of the argument is nonnueric or x and y is having different number of data points and there is no data.
 
*This function will return the result as error when any one of the argument is nonnueric or x and y is having different number of data points and there is no data.
'''INTERCEPT'''('''Y''','''X''')
 
  
'''Where Y '''is the dependent set of observations or data, and
+
==Examples==
 
 
'''Y''' is the independent set of observations or data.
 
 
 
</div>
 
----
 
<div id="1SpaceContent" class="zcontent" align="left">
 
 
 
This function calculates  the point at which a line will intersect the y-axis using the  available x-values and y-values.
 
 
 
</div>
 
----
 
<div id="7SpaceContent" class="zcontent" align="left">
 
 
 
·         An array contains text, logical values, or empty cells that are ignored; but, the cells with the value zero are included.
 
 
 
·          INTERCEPT shows the error value, when Y and X have a dissimilar number of data points.
 
 
 
Formulas:-
 
 
 
·          The equation to calculate the intercept of the regression line, a, is:
 
 
 
where b is the slope, and is calculated as:
 
 
 
and where x and y are the sample means AVERAGE(Y) and AVERAGE(X).
 
 
 
</div>
 
----
 
<div id="12SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="left">
 
 
 
INTERCEPT
 
 
 
</div></div>
 
----
 
<div id="8SpaceContent" class="zcontent" align="left">
 
 
 
Lets see an example,
 
 
 
INTERCEPT(Y, X)
 
 
 
'''B                        C'''
 
 
 
10                     13
 
 
 
8                        11
 
 
 
15                      18
 
 
 
6                        12
 
 
 
12                      10
 
 
 
<nowiki>=INTERCEPT(B2:B6,C2:C6) is 1.2268</nowiki>
 
 
 
</div>
 
----
 
<div id="10SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Syntax </div><div class="ZEditBox"><center></center></div></div>
 
----
 
<div id="4SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Remarks </div></div>
 
----
 
<div id="3SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Examples </div></div>
 
----
 
<div id="11SpaceContent" class="zcontent" align="left"><div class="ZEditBox" align="justify">Description </div></div>
 
----
 
<div id="2SpaceContent" class="zcontent" align="left">
 
 
 
{| id="TABLE3" class="SpreadSheet blue"
 
|- class="even"
 
| class="    " |
 
| Column1
 
| class="  " | Column2
 
| class="  " | Column3
 
| class="  " | Column4
 
|- class="odd"
 
| class=" " | Row1
 
| class="sshl_f" | 10
 
| class="sshl_f" | 13
 
| class="sshl_f" | 1.226804
 
| class="sshl_f" |
 
|- class="even"
 
| class="  " | Row2
 
| class="sshl_f" | 8
 
| class="sshl_f" | 11
 
| class="SelectTD" |
 
| class="sshl_f" |
 
|- class="odd"
 
| Row3
 
| class="sshl_f" | 15
 
| class="sshl_f" | 18
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row4
 
| class="sshl_f" | 6
 
| class="sshl_f" | 12
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="odd"
 
| class=" " | Row5
 
| class="sshl_f" | 12
 
| class="sshl_f" | 10
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|- class="even"
 
| Row6
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
| class="sshl_f" |
 
|}
 
 
 
<div align="left">[[Image:calci1.gif]]</div></div>
 
----
 

Revision as of 00:07, 19 December 2013

INTERCEPT(y,x)


  • is the set of dependent data
  • is the set of independent data.

Description

  • This function is calculating the point where the line is intesecting y-axis using dependent and independent variables.
  • Using this function we can find the value of when is zero.
  • The intercept point is finding using simple linear regression.
  • It is fits a straight line through the set of points in such a way that makes vertical distances between the points of the data set and the fitted line as small as possible.
  • Regression methods nearly to the simple ordinary least squares also exist.
  • i.e.,The Least Squares method relies on taking partial derivatives with respect to the slope and intercept which provides a solvable pair of equations called normal equations.
  • Suppose there are data points , where i = 1, 2, …, n.
  • To find the equation of the regression line:.
  • This equation will give a "best" fit for the data points.
  • The "best" means least-squares method. Here b is the slope.
  • The slope is calculated by:.
  • In this formula and are the sample means AVERAGE of and .
  • In , the arguments can be numbers, names, arrays, or references that contain numbers.
  • The arrays values are disregarded when it is contains text, logical values or empty cells.
  • This function will return the result as error when any one of the argument is nonnueric or x and y is having different number of data points and there is no data.

Examples