Difference between revisions of "Manuals/calci/ERF"

From ZCubes Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
*In <math>ERF(ll,ul),ll</math> is the lower limit of the integrating function and <math>ul</math> is the upper limit of the integrating function.
 
*In <math>ERF(ll,ul),ll</math> is the lower limit of the integrating function and <math>ul</math> is the upper limit of the integrating function.
 
*Also <math>ul</math> is optional. When we are omitting the <math>ul</math> value, then the  integral of the error function between 0 and the given <math>ll</math> value is returned otherwise it will consider the given <math>ll</math> and <math>ul</math> values.  
 
*Also <math>ul</math> is optional. When we are omitting the <math>ul</math> value, then the  integral of the error function between 0 and the given <math>ll</math> value is returned otherwise it will consider the given <math>ll</math> and <math>ul</math> values.  
*This function is also called Gauss error function.<math>ERF </math>is defined by:                                        <math>ERF(z)=\frac {2}{\sqrt(pi()}\int\limits_{0}^{z}e^-t^2 dt</math>         
+
*This function is also called Gauss error function.<math>ERF </math>is defined by:                                        <math>ERF(z)=\frac {2}{\sqrt{&pi}}\int\limits_{0}^{z}e^-t^2 dt</math>         
<math>ERF(a,b)=\frac{2}{\sqrt(pi()}\int\limits_{a}^{b}e^-t^2 dt=ERF(b)-ERF(a)(/math>.
+
<math>ERF(a,b)=\frac{2}{\sqrt{&pi}\int\limits_{a}^{b}e^-t^2 dt=ERF(b)-ERF(a)(/math>.
 
*In this case 'a' is the lower limit and 'b' is the upper limit.
 
*In this case 'a' is the lower limit and 'b' is the upper limit.
 
*This function will return the result as error when  
 
*This function will return the result as error when  

Revision as of 22:53, 25 December 2013

ERF(ll,ul)


  • is the lower limit and is the upper limit.


Description

  • This function gives the value of the error function .
  • Error function is the special function which is encountered in integrating the normal distribution.
  • In is the lower limit of the integrating function and is the upper limit of the integrating function.
  • Also is optional. When we are omitting the value, then the integral of the error function between 0 and the given value is returned otherwise it will consider the given and values.
  • This function is also called Gauss error function.is defined by: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ERF(z)=\frac {2}{\sqrt{&pi}}\int\limits_{0}^{z}e^-t^2 dt}

<math>ERF(a,b)=\frac{2}{\sqrt{&pi}\int\limits_{a}^{b}e^-t^2 dt=ERF(b)-ERF(a)(/math>.

  • In this case 'a' is the lower limit and 'b' is the upper limit.
  • This function will return the result as error when
  1. any one of the argument is nonnumeric.
  2. ll or ul is negative.


Examples

  1. ERF(1,2)=0.15262153
  2. ERF(3,2)=-0.004655645
  3. ERF(0,1)=0.842700735
  4. ERF(5)=1
  5. ERF(-3)=NAN

See Also

References