Difference between revisions of "Manuals/calci/ERF"

From ZCubes Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
*<math>ERF </math>is defined by:<math>ERF(z)=\frac {2}{\sqrt{\pi}}\int\limits_{0}^{z}e^{-t^2} dt</math>         
 
*<math>ERF </math>is defined by:<math>ERF(z)=\frac {2}{\sqrt{\pi}}\int\limits_{0}^{z}e^{-t^2} dt</math>         
 
*<math>ERF(a,b)=\frac{2}{\sqrt{\pi}}\int\limits_{a}^{b}e^{-t^2} dt=ERF(b)-ERF(a)</math>.
 
*<math>ERF(a,b)=\frac{2}{\sqrt{\pi}}\int\limits_{a}^{b}e^{-t^2} dt=ERF(b)-ERF(a)</math>.
*In this case 'a' is the lower limit and 'b' is the upper limit.
+
*In this case <math>a</math> is the lower limit and <math>b</math> is the upper limit.
 
*This function will return the result as error when  
 
*This function will return the result as error when  
#any one of the argument is nonnumeric.
+
any one of the argument is non-numeric.
#ll or ul is negative.
+
<math>ll</math> or <math>ul</math> is negative.
 
 
  
 
==Examples==
 
==Examples==

Revision as of 04:24, 26 December 2013

ERF(ll,ul)


  • is the lower limit and is the upper limit.


Description

  • This function gives the value of the error function .
  • Error function is the special function which is encountered in integrating the normal distribution.
  • In is the lower limit of the integrating function and is the upper limit of the integrating function.
  • Also is optional. When we are omitting the value, then the integral of the error function between 0 and the given value is returned otherwise it will consider the given and values.
  • This function is also called Gauss error function.
  • is defined by:
  • .
  • In this case is the lower limit and is the upper limit.
  • This function will return the result as error when
any one of the argument is non-numeric.
 or  is negative.

Examples

  1. ERF(1,2)=0.15262153
  2. ERF(3,2)=-0.004655645
  3. ERF(0,1)=0.842700735
  4. ERF(5)=1
  5. ERF(-3)=NAN

See Also

References