Difference between revisions of "Manuals/calci/MDETERM"

From ZCubes Wiki
Jump to navigation Jump to search
Line 6: Line 6:
 
*This function gives the determinant value of a matrix.
 
*This function gives the determinant value of a matrix.
 
*To calculate the determinant of the matrix we can choose only square matrix.
 
*To calculate the determinant of the matrix we can choose only square matrix.
*i.e., Number rows and number of columns should be equal.Determinant of the identity matrix is always 1. *Determinant of the matrix A is denoted by det(A) or |A|.
+
*i.e., Number rows and number of columns should be equal.
 +
*Determinant of the identity matrix is always 1.
 +
*Determinant of the matrix A is denoted by det(A) or |A|.
 
*Let A be 2x2 matrix with the elements  
 
*Let A be 2x2 matrix with the elements  
 
<math>A = \begin{bmatrix}
 
<math>A = \begin{bmatrix}
Line 13: Line 15:
 
\end{bmatrix}
 
\end{bmatrix}
 
</math>
 
</math>
                                          c    d].
 
 
*Then det(A)=ad-bc, where a,b,c,d all are real numbers.
 
*Then det(A)=ad-bc, where a,b,c,d all are real numbers.
*Let A be the 3x3 matrix with the elements A=[a   b     c
+
*Let A be the 3x3 matrix with the elements  
                                              d   e   f
+
<math>A = \begin{bmatrix}
                                              g     h   i].
+
a & b & c\\
 +
d & e & f  
 +
g & h & i\\
 +
\end{bmatrix}
 +
</math>
 
Then |A|=a|e  f    -b|d    f      +c|d    e
 
Then |A|=a|e  f    -b|d    f      +c|d    e
 
           h  i|      g    i|        g    h|
 
           h  i|      g    i|        g    h|

Revision as of 03:44, 31 December 2013

MDETERM(arr)


  • where is the array of numeric elements


Description

  • This function gives the determinant value of a matrix.
  • To calculate the determinant of the matrix we can choose only square matrix.
  • i.e., Number rows and number of columns should be equal.
  • Determinant of the identity matrix is always 1.
  • Determinant of the matrix A is denoted by det(A) or |A|.
  • Let A be 2x2 matrix with the elements

  • Then det(A)=ad-bc, where a,b,c,d all are real numbers.
  • Let A be the 3x3 matrix with the elements

Then |A|=a|e f -b|d f +c|d e

          h   i|       g    i|        g    h|
                =a(ei-fh) -b(di-fg)+c(dh-eg)   
  • Let A be a square matrix of order n. Write A = (a_ij),
  • Where aij is the entry on the i number of rows and j number of columns and i=1 to n &j=1 to n.
  • For any i and j, set Aij (called the cofactors), then the general formula for determinant of the matrix A , |A|=summation (j=1 to n)a_ij A_ij, for any fixed i.

Also|A|=summation (i=1 to n)a_ij A_ij, for any fixed j.

  • This function will give the result as error when
1. Any one of the element in array is empty or contain non-numeric
2. Number of rows is not equal to number of columns

Examples

  1. =MDETERM({6,4,8;3,6,1;2,4,5}) = 104
  2. =DETERM({-5,10;6,-8}) = -20
  3. =MDETERM({1,0,2,1;4,0,2,-1;1,4,5,2;3,1,2,0}) = 17
  4. =MDETERM({1,2,3;5,2,8}) = NAN

See Also

References