Difference between revisions of "Manuals/calci/MDETERM"

From ZCubes Wiki
Jump to navigation Jump to search
Line 18: Line 18:
 
*Let A be the 3x3 matrix with the elements  
 
*Let A be the 3x3 matrix with the elements  
 
<math>A = \begin{bmatrix}
 
<math>A = \begin{bmatrix}
a & b & c\\
+
a & b & c \\
d & e & f  
+
d & e & f \\
g & h & i\\
+
g & h & i \\
 
\end{bmatrix}
 
\end{bmatrix}
 
</math>  
 
</math>  
Then |A|=a|e   f     -b|d   f     +c|d   e
+
Then <math>|A|=a\begin{vmatrix}
          h  i|      g    i|        g   h|
+
e & f \\
                =a(ei-fh) -b(di-fg)+c(dh-eg)   
+
h & i
 +
\end{vmatrix} -b\begin{vmatrix}
 +
d & f \\
 +
g & i
 +
\end{vmatrix} +c\begin{vmatrix}
 +
d & e \\
 +
g & h  
 +
\end{vmatrix}</math>
 +
                <math> =a(ei-fh) -b(di-fg)+c(dh-eg)  </math>
 
*Let A be a square matrix of order n. Write A = (a_ij),
 
*Let A be a square matrix of order n. Write A = (a_ij),
 
*Where aij is the entry on the i number of rows and j number of columns and i=1 to n  &j=1 to n.
 
*Where aij is the entry on the i number of rows and j number of columns and i=1 to n  &j=1 to n.

Revision as of 03:50, 31 December 2013

MDETERM(arr)


  • where is the array of numeric elements


Description

  • This function gives the determinant value of a matrix.
  • To calculate the determinant of the matrix we can choose only square matrix.
  • i.e., Number rows and number of columns should be equal.
  • Determinant of the identity matrix is always 1.
  • Determinant of the matrix A is denoted by det(A) or |A|.
  • Let A be 2x2 matrix with the elements

  • Then det(A)=ad-bc, where a,b,c,d all are real numbers.
  • Let A be the 3x3 matrix with the elements

Then

               
  • Let A be a square matrix of order n. Write A = (a_ij),
  • Where aij is the entry on the i number of rows and j number of columns and i=1 to n &j=1 to n.
  • For any i and j, set Aij (called the cofactors), then the general formula for determinant of the matrix A , |A|=summation (j=1 to n)a_ij A_ij, for any fixed i.

Also|A|=summation (i=1 to n)a_ij A_ij, for any fixed j.

  • This function will give the result as error when
1. Any one of the element in array is empty or contain non-numeric
2. Number of rows is not equal to number of columns

Examples

  1. =MDETERM({6,4,8;3,6,1;2,4,5}) = 104
  2. =DETERM({-5,10;6,-8}) = -20
  3. =MDETERM({1,0,2,1;4,0,2,-1;1,4,5,2;3,1,2,0}) = 17
  4. =MDETERM({1,2,3;5,2,8}) = NAN

See Also

References