Difference between revisions of "Manuals/calci/MDETERM"

From ZCubes Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<div style="font-size:30px">'''MDETERM(arr)'''</div><br/>
 
<div style="font-size:30px">'''MDETERM(arr)'''</div><br/>
*where <math>arr</math> is the array of numeric elements
+
*<math>arr</math> is the array of numeric elements
 
 
 
 
 
==Description==
 
==Description==
 
*This function gives the determinant value of a matrix.
 
*This function gives the determinant value of a matrix.
*To calculate the determinant of the matrix we can choose only square matrix.
+
*To calculate the determinant of a matrix, we can choose only square matrix.i.e. Number of rows and number of columns should be equal.
*i.e., Number rows and number of columns should be equal.
 
 
*Determinant of the identity matrix is always 1.
 
*Determinant of the identity matrix is always 1.
*Determinant of the matrix A is denoted by det(A) or |A|.
+
*Determinant of the matrix <math>A</math> is denoted by <math>det(A)</math> or <math>|A|</math>.
*Let A be 2x2 matrix with the elements  
+
*Let <math>A</math> be 2x2 matrix with the elements  
 
<math>A = \begin{bmatrix}
 
<math>A = \begin{bmatrix}
 
a & b \\
 
a & b \\
Line 15: Line 12:
 
\end{bmatrix}
 
\end{bmatrix}
 
</math>
 
</math>
*Then det(A)=ad-bc, where a,b,c,d all are real numbers.
+
*Then <math>det(A)=ad-bc</math>, where <math>a,b,c,d</math> all are real numbers.
*Let A be the 3x3 matrix with the elements  
+
*Let <math>A</math> be the 3x3 matrix with the elements  
 
<math>A = \begin{bmatrix}
 
<math>A = \begin{bmatrix}
 
a & b & c  \\
 
a & b & c  \\
Line 33: Line 30:
 
g & h  
 
g & h  
 
\end{vmatrix}</math>:
 
\end{vmatrix}</math>:
<math>|A| =a(ei-fh) -b(di-fg)+c(dh-eg)</math>
+
<math>|A| =a(ei-fh)-b(di-fg)+c(dh-eg)</math>
 
*Let <math>A</math> be a square matrix of order <math>n</math>. Write <math>A = (a_{ij})</math>,
 
*Let <math>A</math> be a square matrix of order <math>n</math>. Write <math>A = (a_{ij})</math>,
*Where <math>a_{ij}</math> is the entry on the <math>i</math> number of rows and <math>j</math> number of columns and <math>i=1</math> to <math>n</math> & <math>j=1</math> to <math>n</math>.
+
*Where <math>a_{ij}</math> is the entry on the <math>i^{th}</math> row and <math>j^{th}</math> column and <math>i=1</math> to <math>n</math> & <math>j=1</math> to <math>n</math>.
*For any <math>i</math> and <math>j</math>, set <math>A_{ij}</math> (called the co-factors), then the general formula for determinant of the matrix A ,
+
*For any <math>i</math> and <math>j</math>, set <math>A_{ij}</math> (called the co-factors), then the general formula for determinant of the matrix <math>A</math> is,
 
<math>|A|=\sum_{j=1}^n a_{ij} A_{ij}</math>, for any fixed <math>i</math>.
 
<math>|A|=\sum_{j=1}^n a_{ij} A_{ij}</math>, for any fixed <math>i</math>.
 
Also<math>|A|=\sum_{i=1}^n a_{ij} A_{ij}</math>, for any fixed <math>j</math>.
 
Also<math>|A|=\sum_{i=1}^n a_{ij} A_{ij}</math>, for any fixed <math>j</math>.

Revision as of 04:56, 31 December 2013

MDETERM(arr)


  • is the array of numeric elements

Description

  • This function gives the determinant value of a matrix.
  • To calculate the determinant of a matrix, we can choose only square matrix.i.e. Number of rows and number of columns should be equal.
  • Determinant of the identity matrix is always 1.
  • Determinant of the matrix is denoted by or .
  • Let be 2x2 matrix with the elements

  • Then , where all are real numbers.
  • Let be the 3x3 matrix with the elements

Then :

  • Let be a square matrix of order . Write ,
  • Where is the entry on the row and column and to & to .
  • For any and , set (called the co-factors), then the general formula for determinant of the matrix is,

, for any fixed . Also, for any fixed .

  • This function will give the result as error when
1. Any one of the element in array is empty or contain non-numeric
2. Number of rows is not equal to number of columns

Examples

  1. =MDETERM({6,4,8;3,6,1;2,4,5}) = 104
  2. =DETERM({-5,10;6,-8}) = -20
  3. =MDETERM({1,0,2,1;4,0,2,-1;1,4,5,2;3,1,2,0}) = 17
  4. =MDETERM({1,2,3;5,2,8}) = NAN

See Also

References