Difference between revisions of "Manuals/calci/LEVENESTEST"
Jump to navigation
Jump to search
Line 45: | Line 45: | ||
==Example== | ==Example== | ||
+ | {| class="wikitable" | ||
+ | |+Spreadsheet | ||
+ | |- | ||
+ | ! !! DATA1 !! DATA2 !! DATA3 | ||
+ | |- | ||
+ | ! 1 | ||
+ | | 11 || 21 || 28 | ||
+ | |- | ||
+ | ! 2 | ||
+ | | 12 || 20 || 36 | ||
+ | |- | ||
+ | ! 3 | ||
+ | | 14 || 18 || 48 | ||
+ | |- | ||
+ | ! 4 | ||
+ | | 17 || 14 || 51 | ||
+ | |- | ||
+ | ! 5 | ||
+ | | 19 || 10 || 20 | ||
+ | |- | ||
+ | ! 6 | ||
+ | | 22 || 17 || 43 | ||
+ | |- | ||
+ | ! 7 | ||
+ | | 24 || 25 ||24 | ||
+ | |} |
Revision as of 23:35, 4 May 2014
LEVENESTEST(xRange,ConfidenceLevel,LogicalValue)
- is the set of values for the test.
- is the value from 0 to 1.
- is either TRUE or FALSE.
Description
- This function used to test the Homogeneity of variances.
- Levene's test is used to test the Samples have equal variances.
- Equal variances across samples is called homogeneity of variance or homoscedasticity.
- To do the Levenes test we need the following assumptions:
1.The Samples from the populations are independently of one another. 2. The population under consideration are Normally Distributed.
- For three or more variables the following statistical tests for homogeneity of variances are commonly used:
1.Levene's Test. 2.Bartlett Test.
- Levene's test is an alternative to the Bartlett test.
- If the data surely is of normally distributed or nearly to normally distributed then we can use the Bartlett test.
- The Levene's test is defined as
. =Not all of the variances are equal.
- Normally there are three versions of the Levenes test.
- There are
- 1.Use of Mean.
- 2.Use of Median.
- 3.Use of 10% of Trimmed Mean.
- The Levene test statistic is:
.
- where is the result of the test.
- is the number of different groups to which the sampled cases belong.
- is the total number of cases in all groups.
- is the number of cases in the group.
- case from the group.
- Zij is satisfying the one of the following conditions:
- 1.,Where is the Mean of the subgroup.
- 2.,Where is the Median of the subgroup
- 3.,Where is the 10%Trimmed Mean of the subgroup.
- Levene's Testing Procedure:
- 1. checking the assumptions.
- 2.State the Null(H0) and alternative(H1) hypothesis.
- 3.Decide on the Significance level (α).
- 4.Finding the Critical value and Rejection Region.Here ,.
- 5.Compute the Levenes statistic using the formula.
- 6.Then decision of the value of the test statistic,W is falls in the rejection region or if p-value ≤ α, then reject .Otherwise, fail to reject . For the computation p-value we have to use the value of and .
- 7. Finally we have to conclude that the rejection of or fail to rejection according to the test statistic at the significance level.
Example
DATA1 | DATA2 | DATA3 | |
---|---|---|---|
1 | 11 | 21 | 28 |
2 | 12 | 20 | 36 |
3 | 14 | 18 | 48 |
4 | 17 | 14 | 51 |
5 | 19 | 10 | 20 |
6 | 22 | 17 | 43 |
7 | 24 | 25 | 24 |