Difference between revisions of "Manuals/calci/ANTISYMMETRIC"
Jump to navigation
Jump to search
(Created page with "<div style="font-size:30px">'''ANTISYMMETRIC'''</div><br/>") |
|||
Line 1: | Line 1: | ||
− | <div style="font-size:30px">'''ANTISYMMETRIC'''</div><br/> | + | <div style="font-size:30px">'''MATRIX("ANTISYMMETRIC",order)'''</div><br/> |
+ | *<math> order </math> is the order of the Anti diagonal matrix. | ||
+ | |||
+ | ==Description== | ||
+ | *This function gives the matrix of order 3 which is satisfying the anti symmetric properties. | ||
+ | *An antisymmetric matrix is a square matrix that satisfies the identity A=-A^(T) ,where A^(T) is the matrix transpose. | ||
+ | *For example, A= <math>\begin{bmatrix} | ||
+ | 0 & -1 \\ | ||
+ | 1 & 0 \\ | ||
+ | \end{bmatrix}</math> | ||
+ | *So the form of anti symmetric is <math>\begin{bmatrix} | ||
+ | 0 & a12 & a13 \\ | ||
+ | -a12 & 0 & a23 \\ | ||
+ | -a13 & -a23 & 0 \\ | ||
+ | \end{bmatrix}</math> | ||
+ | *Antisymmetric matrices are commonly called "skew symmetric matrices" or "antimetric". | ||
+ | *So in CALCI,users can give the syntax as: | ||
+ | *1.MATRIX("anti-symmetric") | ||
+ | *2.MATRIX("antisymmetric") | ||
+ | *2.MATRIX("skewsymmetric") | ||
+ | *3.MATRIX("skew-symmetric) | ||
+ | *Here this is case-insensitive. |
Revision as of 11:06, 17 April 2015
MATRIX("ANTISYMMETRIC",order)
- is the order of the Anti diagonal matrix.
Description
- This function gives the matrix of order 3 which is satisfying the anti symmetric properties.
- An antisymmetric matrix is a square matrix that satisfies the identity A=-A^(T) ,where A^(T) is the matrix transpose.
- For example, A=
- So the form of anti symmetric is
- Antisymmetric matrices are commonly called "skew symmetric matrices" or "antimetric".
- So in CALCI,users can give the syntax as:
- 1.MATRIX("anti-symmetric")
- 2.MATRIX("antisymmetric")
- 2.MATRIX("skewsymmetric")
- 3.MATRIX("skew-symmetric)
- Here this is case-insensitive.