Difference between revisions of "Manuals/calci/KRUSKALWALLISTEST"
Jump to navigation
Jump to search
Line 35: | Line 35: | ||
**7.State Conclusion:To be significant, our obtained H has to be equal to or LESS than this critical value. | **7.State Conclusion:To be significant, our obtained H has to be equal to or LESS than this critical value. | ||
==Example== | ==Example== | ||
− | {| class=" | + | |
− | | Method1 || Method2 || Method3 | + | {| class="SpreadSheet notepad" id="TABLE1" rcid="TABLE1" title="TABLE1" style="width: auto; position: relative; height: auto;" | |
− | |- | + | |+ |
− | | 94 || 82 || 89 | + | Raw Scores |
− | |- | + | |
− | | 87 || 85 || 68 | + | |- class="even" r="1" style="position: relative;" | |
− | |- | + | | c="A" style="position: relative; overflow: visible; width: 69px;" | Method1 |
− | | 90 || 79 || 72 | + | | c="B" style="position: relative; overflow: visible; width: 71px;" | Method2 |
− | |- | + | | c="C" style="position: relative; overflow: visible; width: 70px;" | Method3 |
− | | 74 || 84 || 76 | + | |
− | |- | + | |- class="odd" r="2" |
− | | 86 || 61 || 69 | + | | style="width: 69px;" | 94 |
− | |- | + | | style="width: 71px;" | 82 |
− | | 97 || 72 || 65 | + | | style="width: 70px;" | 89 |
− | |- | + | |
− | | 0 || 80 || 0 | + | |- class="even" r="3" |
+ | | style="width: 69px;" | 87 | ||
+ | | style="width: 71px;" | 85 | ||
+ | | style="width: 70px;" | 68 | ||
+ | |||
+ | |- class="odd" r="4" | ||
+ | | style="width: 69px;" | 90 | ||
+ | | style="width: 71px;" | 79 | ||
+ | | style="width: 70px;" | 72 | ||
+ | |||
+ | |- class="even" r="5" | ||
+ | | style="width: 69px;" | 74 | ||
+ | | style="width: 71px;" | 84 | ||
+ | | style="width: 70px;" | 76 | ||
+ | |||
+ | |- class="odd" r="6" | ||
+ | | style="width: 69px;" | 86 | ||
+ | | style="width: 71px;" | 61 | ||
+ | | style="width: 70px;" | 69 | ||
+ | |||
+ | |- class="even" r="7" | ||
+ | | style="width: 69px;" | 97 | ||
+ | | style="width: 71px;" | 72 | ||
+ | | style="width: 70px;" | 65 | ||
+ | |||
+ | |- class="odd" r="8" | ||
+ | | style="width: 69px;" | 0 | ||
+ | | style="width: 71px;" | 80 | ||
+ | | style="width: 70px;" | 0 | ||
+ | |||
+ | |||
+ | |} | ||
+ | |||
+ | {| class="SpreadSheet notepad" id="TABLE5" rcid="TABLE5" title="TABLE5" style="width: auto; position: relative; height: auto;" | | ||
+ | |+ KRUSKAL WALLIS TEST | ||
+ | Ranking | ||
+ | |||
+ | |- class="even" r="1" style="position: relative;" | | ||
+ | | c="A" style="position: relative; overflow: visible; width: 69px;" | Method1 | ||
+ | | c="B" style="position: relative; overflow: visible; width: 71px;" | Method2 | ||
+ | | c="C" style="position: relative; overflow: visible; width: 70px;" | Method3 | ||
+ | |||
+ | |- class="odd" r="2" | ||
+ | | style="width: 69px;" | 18 | ||
+ | | style="width: 71px;" | 11 | ||
+ | | style="width: 70px;" | 16 | ||
+ | |||
+ | |- class="even" r="3" | ||
+ | | style="width: 69px;" | 15 | ||
+ | | style="width: 71px;" | 13 | ||
+ | | style="width: 70px;" | 3 | ||
+ | |||
+ | |- class="odd" r="4" | ||
+ | | style="width: 69px;" | 17 | ||
+ | | style="width: 71px;" | 9 | ||
+ | | style="width: 70px;" | 5.5 | ||
+ | |||
+ | |- class="even" r="5" | ||
+ | | style="width: 69px;" | 7 | ||
+ | | style="width: 71px;" | 12 | ||
+ | | style="width: 70px;" | 8 | ||
+ | |||
+ | |- class="odd" r="6" | ||
+ | | style="width: 69px;" | 14 | ||
+ | | style="width: 71px;" | 1 | ||
+ | | style="width: 70px;" | 4 | ||
+ | |||
+ | |- class="even" r="7" | ||
+ | | style="width: 69px;" | 19 | ||
+ | | style="width: 71px;" | 5.5 | ||
+ | | style="width: 70px;" | 2 | ||
+ | |||
+ | |- class="odd" r="8" | ||
+ | | style="width: 69px;" | | ||
+ | | style="width: 71px;" | 10 | ||
+ | | style="width: 70px;" | | ||
+ | |||
+ | |||
+ | |} | ||
+ | |||
+ | {| class="SpreadSheet notepad" id="TABLE6" rcid="TABLE6" title="TABLE6" style="width: auto; position: relative; height: auto;" | | ||
+ | |+ | ||
+ | TEST RESULTS | ||
+ | |||
+ | |- class="even" r="1" style="position: relative;" | | ||
+ | | c="A" style="position: relative; overflow: visible; width: 122px;" | | ||
+ | | c="B" style="position: relative; overflow: visible; width: 173px;" | Method1 | ||
+ | | c="C" style="position: relative; overflow: visible; width: 146px;" | Method2 | ||
+ | | c="D" style="position: relative; overflow: visible; width: 155px;" | Method3 | ||
+ | |||
+ | |- class="odd" r="2" | ||
+ | | style="width: 122px;" | Sum of Ranks | ||
+ | | style="width: 173px;" | 90 | ||
+ | | style="width: 146px;" | 61.5 | ||
+ | | style="width: 155px;" | 38.5 | ||
+ | |||
+ | |- class="even" r="3" | ||
+ | | style="width: 122px;" | Group Size | ||
+ | | style="width: 173px;" | 6 | ||
+ | | style="width: 146px;" | 7 | ||
+ | | style="width: 155px;" | 6 | ||
+ | |||
+ | |- class="odd" r="4" | ||
+ | | style="width: 122px;" | R^2/n | ||
+ | | style="width: 173px;" | 1350 | ||
+ | | style="width: 146px;" | 540.3214285714286 | ||
+ | | style="width: 155px;" | 247.04166666666666 | ||
+ | |||
+ | |- class="even" r="5" | ||
+ | | style="width: 122px;" | TotalRankSum | ||
+ | | style="width: 173px;" | 190 | ||
+ | |||
+ | |- class="odd" r="6" | ||
+ | | style="width: 122px;" | Total Group Size | ||
+ | | style="width: 173px;" | 19 | ||
+ | |||
+ | |- class="even" r="7" | ||
+ | | style="width: 122px;" | Total R^2/n | ||
+ | | style="width: 173px;" | 2137.363095238095 | ||
+ | |||
+ | |- class="odd" r="8" | ||
+ | | style="width: 122px;" | H | ||
+ | | style="width: 173px;" | 7.495676691729315 | ||
+ | |||
+ | |- class="even" r="9" | ||
+ | | style="width: 122px;" | df | ||
+ | | style="width: 173px;" | 2 | ||
+ | |||
+ | |- class="odd" r="10" | ||
+ | | style="width: 122px;" | p-value | ||
+ | | style="width: 173px;" | 0.023568638074462633 | ||
+ | |||
+ | |- class="even" r="11" | ||
+ | | style="width: 122px;" | a | ||
+ | | style="width: 173px;" | 0.05 | ||
+ | |||
+ | |||
|} | |} |
Revision as of 09:40, 5 May 2015
KRUSKALWALLISTEST(Array,Confidencelevel,Logicalvalue)
- is the set of values to find the test statistic.
- is the value between 0 and 1.
- is either TRUE or FALSE.
Description
- This function gives the test statistic value of the Kruskal Wallis test.
- It is one type of Non parametric test.
- It is a logical extension of the Wilcoxon-Mann-Whitney Test.
- The parametric equivalent of the Kruskal-Wallis test is the one-way analysis of variance (ANOVA).
- This test is used for comparing more than two sample that are independent or not related.
- It is used to test the null hypothesis that all populations have identical distribution functions against the alternative hypothesis that at least two of the samples differ only with respect to Median.
- Kruskal–Wallis is also used when the examined groups are of unequal size.
- When the Kruskal-Wallis test leads to significant results, then at least one of the samples is different from the other samples.
- The test does not identify where the differences occur or how many differences actually occur.
- Since it is a non-parametric method, the Kruskal–Wallis test does not assume a normal distribution of the residuals, unlike the analogous one-way analysis of variance.
- However, the test does assume an identically shaped and scaled distribution for each group, except for any difference in medians.
- The Kruskal Wallis test data are having the following properties:
- 1.The data points must be independent from each other.
- 2.The distributions do not have to be normal and the variances do not have to be equal.
- 3.The data points must be more than five per sample.
- 4.All individuals must be selected at random from the population.
- 5.All individuals must have equal chance of being selected.
- 6.Sample sizes should be as equal as possible but some differences are allowed.
- Steps for Kruskal Wallis Test:
- 1. Define Null and Alternative Hypotheses:
- Null Hypotheses:There is no difference between the conditions.
- Alternative Hypotheses:There is a difference between the conditions.
- 2.State Alpha:Alpha=0.05.
- 3.Calculate degrees of freedom:df = k – 1, where k = number of groups.
- 4.State Decision Rule:From the Chi squared table calculate the critical value.
- Suppose the is greater than the critical value then reject the null hypothesis
- 5.Calculate the Test Statistic:
- 6.State Results:In this step we have to take a decision of null hypothesis either accept or reject depending on the critical value table.
- 7.State Conclusion:To be significant, our obtained H has to be equal to or LESS than this critical value.
Example
Method1 | Method2 | Method3 |
94 | 82 | 89 |
87 | 85 | 68 |
90 | 79 | 72 |
74 | 84 | 76 |
86 | 61 | 69 |
97 | 72 | 65 |
0 | 80 | 0
|
Method1 | Method2 | Method3 |
18 | 11 | 16 |
15 | 13 | 3 |
17 | 9 | 5.5 |
7 | 12 | 8 |
14 | 1 | 4 |
19 | 5.5 | 2 |
10 |
|
Method1 | Method2 | Method3 | |
Sum of Ranks | 90 | 61.5 | 38.5 |
Group Size | 6 | 7 | 6 |
R^2/n | 1350 | 540.3214285714286 | 247.04166666666666 |
TotalRankSum | 190 | ||
Total Group Size | 19 | ||
Total R^2/n | 2137.363095238095 | ||
H | 7.495676691729315 | ||
df | 2 | ||
p-value | 0.023568638074462633 | ||
a | 0.05
|