Difference between revisions of "Manuals/calci/IDEMPOTENT"

From ZCubes Wiki
Jump to navigation Jump to search
Line 8: Line 8:
 
*The properties of idempotent matrix is:
 
*The properties of idempotent matrix is:
 
# <math>K^r=K</math> for r being a positive integer.  
 
# <math>K^r=K</math> for r being a positive integer.  
# I-K is idempotent.  
+
# <math>I-K</math> is idempotent.  
 
# If <math>K_1</math>  and <math>K_2</math>  are idempotent matrices and <math>K_1K_2 =K_2K_1</math>. Then <math>K_1K_2</math> is idempotent.
 
# If <math>K_1</math>  and <math>K_2</math>  are idempotent matrices and <math>K_1K_2 =K_2K_1</math>. Then <math>K_1K_2</math> is idempotent.
 +
 +
==Examples==
 +
*1.MATRIXTYPE("idempotent",IM(19)) = true
 +
*2.MATRIXTYPE([12,14],"idempotent") = false
 +
*3.MATRIXTYPE(IM(5)|*|2,"idempotent") = false
 +
 +
==See Also==
 +
*[[Manuals/calci/IDENTITY| IDENTITY]]
 +
*[[Manuals/calci/SYMMETRIC| SYMMETRIC]]
 +
*[[Manuals/calci/PASCAL| PASCAL]]
 +
*[[Manuals/calci/TRIANGULAR| TRIANGULAR]]
 +
 +
==References==

Revision as of 13:32, 5 May 2015

MATRIX("IDEMPOTENT",order)


  • is the size of the Idempotent matrix.

Description

  • This function is showing the idempotent matrix of order 3.
  • An idempotent matrix is a matrix which, when multiplied by itself, is getting the same matrix.
  • i.e.,A square matrix K is said to be idempotent if .
  • The properties of idempotent matrix is:
  1. for r being a positive integer.
  2. is idempotent.
  3. If and are idempotent matrices and . Then is idempotent.

Examples

  • 1.MATRIXTYPE("idempotent",IM(19)) = true
  • 2.MATRIXTYPE([12,14],"idempotent") = false
  • 3.MATRIXTYPE(IM(5)|*|2,"idempotent") = false

See Also

References