Difference between revisions of "Manuals/calci/FTESTANALYSIS"

From ZCubes Wiki
Jump to navigation Jump to search
Line 52: Line 52:
  
 
{| class="wikitable"  
 
{| class="wikitable"  
 +
|+Result
 
|-  
 
|-  
! !!Variable1 !! Variable2
+
! !!Variable1 !! Variable2  
 
|-
 
|-
| Mean || 23.25 || 18.5
+
! Mean  
 +
| 23.25 || 18.5
 
|-
 
|-
| Variance || 58.916666666666664 || 79
+
! Variance  
 +
| 58.916666666666664 || 79
 
|-
 
|-
| Observations || 4 || 4
+
! Observations  
 +
| 4 || 4
 
|-
 
|-
| Degree Of Freedom || 3 || 3
+
! Degree Of Freedom
 +
| 3 || 3
 
|-
 
|-
| F-Value || 0.7457805907172995 ||
+
! F-Value  
 +
| 0.7457805907172995 ||
 
|-
 
|-
| P(F<=f) one-tail || 0.407624533735915 ||
+
! P(F<=f) one-tail  
 +
| 0.407624533735915 ||
 
|-
 
|-
| F Critical one-tail || 1 ||
+
! F Critical one-tail  
 +
| 1 ||
 
|}
 
|}
 
   
 
   
Line 95: Line 103:
 
=FTEST(A1:A5,B1:B5,0.30,false)
 
=FTEST(A1:A5,B1:B5,0.30,false)
 
{| class="wikitable"  
 
{| class="wikitable"  
 +
|+Result
 
|-  
 
|-  
 
! !!Variable1 !! Variable2
 
! !!Variable1 !! Variable2
 
|-
 
|-
| Mean || 18.6 || 30
+
! Mean  
 +
| 18.6 || 30
 
|-
 
|-
| Variance || 264.29999999999995 || 250
+
! Variance
 +
| 264.29999999999995 || 250
 
|-
 
|-
| Observations || 5 || 5
+
! Observations  
 +
| 5 || 5
 
|-
 
|-
| Degree Of Freedom || 4 || 4
+
! Degree Of Freedom  
 +
| 4 || 4
 
|-
 
|-
| F-Value || 1.0572 ||
+
! F-Value  
 +
| 1.0572 ||
 
|-
 
|-
| P(F<=f) one-tail || 0.4791517866106137 ||
+
! P(F<=f) one-tail  
 +
| 0.4791517866106137 ||
 
|-
 
|-
| F Critical one-tail || 1.7528541706121352 ||
+
! F Critical one-tail
 +
| 1.7528541706121352 ||
 
|}
 
|}
  

Revision as of 10:37, 3 June 2015

FTESTANALYSIS(ar1,ar2,alpha,newtableflag)


  • and are array of data.
  • is the significance level.
  • is the logical value.

Description

  • This function gives the analysis of variance.
  • This statistics used to determine the significant difference of three or more variables or multivariate collected from experimental

research.

  • So this analysis is depending on the hypothesis.
  • The hypotheses for this test are
  (null hypothesis, variances are equal)
  (alternative hypothesis, variances are not equal)
  • For example, the comparison of SCORES across GROUPS,where there are two groups.
  • The purpose is to determine if the mean SCORE on a test is different for the two groups tested (i.e., control and treatment groups)
  • In FTESTANALYSIS(ar1,ar2,alpha,newtableflag) where is the data of first array, is the data of second array.
  • is the significance level which ranges from 0 to 1.
  • is the logical value like TRUE or FALSE.
  • TRUE is indicating the result will display in new worksheet.Suppose we are omitted the lv value it will consider the value as FALSE.
  • The F statistic of this function calculated by:

has an F-distribution with Failed to parse (syntax error): {\displaystyle n−1} and Failed to parse (syntax error): {\displaystyle m−1} degrees of freedom.

  • Also is the sample variance of first set of values.
  • And is the sample variance of second set of values.
  • If the f-value from the test is higher than the f-critical value then the null hypothesis should be rejected and the variances are unequal.
  • So the following cases will occur:
  • If the variances are assumed to NOT be equal, proceed with the t-test that assumes non-equal variances.
  • If the variances are assumed to be equal, proceed with the t-test that assumes equal variances.
  • In this function the array may be any numbers, names, or references that contains numbers.
  • values are not considered if the array contains any text, logical values or empty cells.

When the or is less than 2 or the variance of the array value is zero, then this function will return the result as error.

Examples

1.

Spreadsheet
A B
1 15 21
2 27 12
3 19 30
4 32 11

=FTESTANALYSIS(A1:A4,B1:B4,0.5,TRUE)

Result
Variable1 Variable2
Mean 23.25 18.5
Variance 58.916666666666664 79
Observations 4 4
Degree Of Freedom 3 3
F-Value 0.7457805907172995
P(F<=f) one-tail 0.407624533735915
F Critical one-tail 1


2.

Spreadsheet
A B
1 5 10
2 8 20
3 12 30
4 45 40
5 23 50

=FTEST(A1:A5,B1:B5,0.30,false)

Result
Variable1 Variable2
Mean 18.6 30
Variance 264.29999999999995 250
Observations 5 5
Degree Of Freedom 4 4
F-Value 1.0572
P(F<=f) one-tail 0.4791517866106137
F Critical one-tail 1.7528541706121352

See Also

References

F Test