Difference between revisions of "Manuals/calci/GAMMAFUNCTION"
Jump to navigation
Jump to search
Line 10: | Line 10: | ||
*For complex numbers with a positive real part, it is defined via a convergent improper integral: | *For complex numbers with a positive real part, it is defined via a convergent improper integral: | ||
<math>\Gamma (z) = \int\limits_{0}^{\infty} x^{z-1} e^{-x} dx </math> | <math>\Gamma (z) = \int\limits_{0}^{\infty} x^{z-1} e^{-x} dx </math> | ||
+ | *This function will return the result as NaN when the given number as negative or Non numeric. | ||
+ | |||
+ | |||
+ | ==Examples== | ||
+ | #GAMMAFUNCTION(2) = 1.0000026676984093 | ||
+ | #GAMMAFUNCTION(45.3) = 8.308990531109891e+54 | ||
+ | #GAMMAFUNCTION(-3) = NaN | ||
+ | |||
+ | ==See Also== | ||
+ | *[[Manuals/calci/SUM | SUM]] | ||
+ | *[[Manuals/calci/AVERAGE | AVERAGE ]] | ||
+ | *[[Manuals/calci/AVERAGEA | AVERAGEA ]] |
Revision as of 14:16, 28 November 2016
GAMMAFUNCTION (z)
- is any positive real number.
Description
- This function gives the value of the Gamma function.
- The Gamma function is defined to be an extension of the factorial to complex and real number arguments.
- That is, if n is a positive integer:
- Gamma function is defined for all complex numbers except the non-positive integers.
- For complex numbers with a positive real part, it is defined via a convergent improper integral:
- This function will return the result as NaN when the given number as negative or Non numeric.
Examples
- GAMMAFUNCTION(2) = 1.0000026676984093
- GAMMAFUNCTION(45.3) = 8.308990531109891e+54
- GAMMAFUNCTION(-3) = NaN